Reference: Dragan AI and Privalov PL (2002) Unfolding of a leucine zipper is not a simple two-state transition. J Mol Biol 321(5):891-908

Reference Help

Abstract


Temperature-induced unfolding of the leucine zipper, an alpha-helical, double-stranded, coiled-coil, was studied by circular dichroism spectroscopy, spectrofluorimetry and heat capacity scanning calorimetry. It is shown that this process does not represent a simple two-state transition, as previously believed, but consists of several stages. The first transition starts at the very beginning of heating from 0 degrees C and proceeds with significant heat absorption and decrease of ellipticity. This transition does not depend on the concentration of protein and is sensitive to modification of the N terminus; it is therefore associated with unfolding or fraying of this part of the leucine zipper. The second transition takes place at a considerably higher temperature; it is more pronounced than the first one and does not depend on the concentration of protein, i.e. it is unimolecular. This transition is sensitive to modification of both termini of the leucine zipper and affects the optical properties of a tryptophan residue placed in the central part of the zipper. It therefore involves the whole dimer but does not result in its dissociation, presumably being associated with some repacking of the coiled-coil. This second transition is followed at higher temperatures by the concentration-dependent cooperative unfolding/dissociation of the two strands. The enthalpy and entropy of the temperature-induced structural changes of the leucine zipper that take place before its cooperative unfolding/dissociation comprises almost 40% of the total enthalpy and entropy of unfolding of the completely folded coiled-coil, the state in which it appears to be below 0 degrees C. Comparison of the total enthalpy of leucine zipper unfolding with that of a single-stranded alpha-helix shows that their temperature-dependence correlates with the extent of intramolecular non-polar contacts and allows an assessment of the enthalpy of hydrogen bonding in alpha-helices, which appears to be about 3.3kJmol(-1) at 20 degrees C.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Dragan AI, Privalov PL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference