Reference: Artigues A, et al. (2002) Binding to chaperones allows import of a purified mitochondrial precursor into mitochondria. J Biol Chem 277(28):25047-55

Reference Help

Abstract


Refolding of the acid-unfolded precursor to mitochondrial aspartate aminotransferase (pmAAT) is inhibited when cytosolic Hsc70 is included in the refolding reaction (Artigues, A., Iriarte, A., and Martinez-Carrion, M. (1997) J. Biol. Chem. 272, 16852-16861). At low molar excess of Hsc70 pmAAT is recovered in insoluble aggregates containing equal amounts of Hsc70. However, in the presence of a large excess of Hsc70, refolding of pmAAT is still arrested, but the enzyme remains in solution. Similar behavior was observed with two other cytosolic chaperones, bovine Hsp90 and yeast Ydj1. Coimmunoprecipitation of pmAAT using Hsc70 antibodies confirmed the formation of soluble Hsc70-pmAAT complexes at high concentrations of the chaperone. Data from analytical centrifugation, sedimentation in glycerol gradients, and partial purification of the soluble complexes indicate that multiple Hsc70 molecules bind per pmAAT polypeptide chain. The absence of catalytic activity together with the protease susceptibility of pmAAT bound to Hsc70, Hsp90, or Ydj1 suggest that these chaperones bind and maintain pmAAT in a partially unfolded state, analogous to the import-competent conformation of the protein synthesized in cell-free extracts. Remarkably, the purified pmAAT bound to Hsc70 or Ydj1, but not to Hsp90, is imported by isolated mitochondria in a reticulocyte lysate-dependent manner. Thus, both Hsc70 and Ydj1 can trap an import-competent folding intermediate of pmAAT, but productive binding and import into mitochondria require the collaboration of additional cytosolic factors from the lysate.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Artigues A, Iriarte A, Martinez-Carrion M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference