Reference: Grably MR, et al. (2002) HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Mol Microbiol 44(1):21-35

Reference Help

Abstract


In an effort to understand how an accurate level of stress-specific expression is obtained, we studied the promoter of the yeast HSP104 gene. Through 5' deletions, we defined a 334 bp fragment upstream of the first coding AUG as sufficient and essential for maximal basal activity and a 260 bp fragment as sufficient and essential for heat shock responsiveness. These sequences contain heat shock elements (HSEs) and stress response elements (STREs) that cooperate to achieve maximal inducible expression. However, in the absence of one set of factors (e.g. in msn2Deltamsn4Delta cells) proper induction is obtained exclusively through HSEs. We also show that HSP104 is constitutively derepressed in ras2Delta cells. This derepression is achieved exclusively through activation of STREs, with no role for HSEs. Strikingly, in ras2Deltamsn2Deltamsn4Delta cells the HSP104 promoter is also derepressed, but in this strain derepression is mediated through HSEs, showing the flexibility and adaptation of the promoter. Thus, appropriate transcription of HSP104 is usually obtained through cooperation between the Msn2/4/STRE and the HSF/ HSE systems, but each factor could activate the promoter alone, backing up the other. Transcription control of HSP104 is adaptive and robust, ensuring proper expression under extreme conditions and in various mutants.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Grably MR, Stanhill A, Tell O, Engelberg D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence