Reference: Torshin IY (2002) Functional maps of the junctions between interglobular contacts and active sites in glycolytic enzymes -- a comparative analysis of the biochemical and structural data. Med Sci Monit 8(4):BR123-35

Reference Help

Abstract


Background: Oligomers and separate subunits of the glycolytic enzymes often have different catalytic properties. However, spectral data show an apparent lack of significant conformational changes during oligomerization. Since the conformation of an enzyme determines its catalytic properties, the structural mechanism(s) influencing the activity is of considerable interest.

Material/methods: Analysis of the spatial structures of the junctions between interglobular contacts and binding sites may give a clue to the mechanism(s) of the activation. In this work, the problem was studied using available structural and biochemical data for the oligomeric enzymes of glycolysis.

Results: Computational analysis of the structures of the junctions has identified three structurally distinct types of junctions: 1. interglobular binding site (2 of 8 enzymes); 2. domain-domain stabilization (5 of 8); and 3. 'sequence overlap' or a local conformational change (all enzymes). Thus the catalytic activity may be influenced through the shifts of the modules of protein structure (types 1, 2) and/or due to a slight change in the local structure (type 3). The more common junctions of types 2 and 3 are well conserved among eukaryotic enzymes, which suggests their biological importance.

Conclusions: The results suggest that a profound and a complex change in conformation in subunits of an oligomeric enzyme may not be necessary for a significant change in the catalytic properties. The analysis maps the residues important for the junctions and thus for the link between the catalytic activity and the oligomeric state of the enzymes.

Reference Type
Comparative Study | Journal Article
Authors
Torshin IY
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference