Reference: Ding FX, et al. (2002) The chain length dependence of helix formation of the second transmembrane domain of a G protein-coupled receptor of Saccharomyces cerevisiae. J Biol Chem 277(17):14483-92

Reference Help

Abstract


The chain length dependence of helix formation of transmembrane peptides in lipids was investigated using fragments corresponding to the second transmembrane domain of the alpha-factor receptor from Saccharomyces cerevisiae. Seven peptides with chain lengths of 10 (M2-10; FKYLLSNYSS), 14 (M2-14), 18 (M2-18), 22 (M2-22), 26 (M2-26), 30 (M2-30) and 35 (M2-35; RSRKTPIFIINQVSLFLIILHSALYFKYLLSNYSS) residues, respectively, were synthesized. CD spectra revealed that M2-10 was disordered, and all of the other peptides assumed partially alpha-helical secondary structures in 99% trifluoroethanol (TFE)/H(2)O. In 50% TFE/H(2)O, M2-30 assumed a beta-like structure. The other six peptides exhibited the same CD patterns as those found in 99% TFE/H(2)O. In 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (4:1 ratio) vesicles, M2-22, M2-26, and M2-35 formed alpha-helical structures, whereas the other peptides formed beta-like structures. Fourier transform infrared spectroscopy in 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (4:1) multilayers showed that M2-10, M2-14, M2-18, and M2-30 assumed beta-structures in this environment. Another homologous 30-residue peptide (M2-30B), missing residues SNYSS from the N terminus and extending to RSRKT on the C terminus, was helical in lipid bilayers, suggesting that residues at the termini of transmembrane domains influence their biophysical properties. Attenuated total reflection Fourier transform infrared spectroscopy revealed that M2-22, M2-26, M2-30B, and M2-35 were alpha-helical and oriented at angles of 12 degrees, 13 degrees, 36 degrees, and 34 degrees, respectively, with respect to the multilayer normal. This study showed that chain length must be taken into consideration when using peptides representing single transmembrane domains as surrogates for regions of an intact receptor. Furthermore, this work indicates that the tilt angle and conformation of transmembrane portions of G protein-coupled receptors may be estimated by detailed spectroscopic measurements of single transmembrane peptides.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Ding FX, Schreiber D, VerBerkmoes NC, Becker JM, Naider F
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference