Reference: Irani N, et al. (2002) Expression of recombinant cytoplasmic yeast pyruvate carboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells. J Biotechnol 93(3):269-82

Reference Help

Abstract


Recently, a recombinant yeast pyruvate carboxylase expressed in the cytoplasm of BHK-21 cells was shown to reconstitute the missing link between glycolysis and TCA, thus increasing the flux of glucose into the TCA and resulting in a higher intracellular ATP content. Now, these metabolically engineered cells have been additionally transfected with a plasmid bearing the gene for human erythropoietin. EPO yield and substrate-specific productivity of the recombinant BHK-21 cells have been compared to control cells without the PYC2-gene but transfected with the plasmid coding for the expression of the selection genes and EPO. PYC2-expressing clones showed a 2-fold higher glucose-specific productivity and a 2-fold higher product concentration in a continuously perfused bioreactor. Moreover, the PYC2 expression enabled the cells to become more resistant to low glucose concentrations in the culture medium. They could produce at nearly maximum productivity under glucose-limiting conditions of 0.05-1 gl(-1) that guaranteed a reduced accumulation of lactate in fed-batch production systems. Due to the fact that PYC2-expressing cells are characterized by reduced glucose consumption, a prolonged production phase in bioreactors can be maintained. Based on the demand not to fall short of 80% cell viability for the production, EPO could be produced for 2 days (30%) longer compared to the control due to a more economic exploitation of glucose, and the prolonged viability period of the cells using a batch cultivation driven by glutamine limitation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Irani N, Beccaria AJ, Wagner R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference