Reference: Matiach A and Schröder-Köhne S (2001) Yeast cys3 and gsh1 mutant cells display overlapping but non-identical symptoms of oxidative stress with regard to subcellular protein localization and CDP-DAG metabolism. Mol Genet Genomics 266(3):481-96

Reference Help

Abstract


In a screen for temperature-sensitive (37 degrees C) mutants of Saccharomyces cerevisiae that are defective in the proper localization of the Golgi transmembrane protein Emp47p, we uncovered a constitutive loss-of-function mutation in CYS3/STR1, the gene coding for cystathionine-gamma-lyase. We showed by immunofluorescence, sucrose-gradient analysis and quantitative Western analysis that the mutant mislocalized Emp47p to the vacuole at high temperature, while Golgi structures were apparently normal and biosynthetic routing of the vacuolar carboxypeptidase Y (CPY) and the plasma membrane GPI-anchored protein Gas1p were unaffected. The effect of high temperature on Emp47p localization, as well as the temperature sensitivity of the mutant strain on rich medium, appear to be caused by oxidative stress and are correlated with severe reductions in the intracellular levels of low-molecular-weight thiols. In accordance with this conclusion, cys3-2 mutant cells were more sensitive to the oxidizing agent 1-chloro-2,4-dinitrobenzene, which also aggravated the mislocalization of Emp47p observed at high temperature. Furthermore, all the phenotypes of the mutant were completely complemented by exogenous supply of the main low-molecular-weight thiol, glutathione (GSH) and, importantly, the thiol beta-mercaptoethanol reversed the temperature sensitivity of the mutant. A comparison of our mutant with a mutant defective in GSH synthesis showed that gsh1Delta cells were similar to wild-type cells under the stress conditions tested, with the exception of one novel oxidative stress-related phenotype that is observed in both cys3-2 and gsh1Delta mutant cells - a defect in CDP-DAG metabolism upon shift to the non-permissive temperature. As most of the stress-related phenotypes of cys3-2 mutant cells are more severe than those seen in gsh1Delta cells, we conclude that cysteine as such is required and sufficient to confer some degree of protection from oxidative stress in yeast cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Matiach A, Schröder-Köhne S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference