Reference: Zhang CT, et al. (2001) A novel method to calculate the G+C content of genomic DNA sequences. J Biomol Struct Dyn 19(2):333-41

Reference Help

Abstract


The base composition of a DNA fragment or genome is usually measured by the proportion of A+T or G+C in the sequence. The G+C content along genomic sequences is usually calculated using an overlapping or non-overlapping sliding window method. The result and accuracy of such an approach depends on the size of the window and the moving distance adopted. In this paper, a novel windowless technique to calculate the G+C content of genomic sequences is proposed. By this method, the G+C content can be calculated at different "resolution". In an extreme case, the G+C content may be computed at a specific point, rather than in a window of finite size. This is particularly useful to analyze the fine variation of base composition along genomic sequences. As the first example, the variation of G+C content along each of 16 yeast chromosomes is analyzed. The G+C-rich regions with length larger than 5 kb sequences are detected and listed in details. It is found that each chromosome consists of several G+C-rich and G+C-poor regions alternatively, i.e., a mosaic structure. Another example is to analyze the G+C content for each of the two chromosomes of the Vibrio cholerae genome. Based on the variations of the G+C content in each chromosome, it is shown that some fragments in the Vibrio cholerae genome may have been transferred from other species. Especially, the position and size of the large integron island on the smaller chromosome was precisely predicted. This method would be a useful tool for analyzing genomic sequences.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Zhang CT, Wang J, Zhang R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference