Reference: Lú Chau T, et al. (2001) Population dynamics of a continuous fermentation of recombinant Saccharomyces cerevisiae using flow cytometry. Biotechnol Prog 17(5):951-7

Reference Help

Abstract


The plasmid instability of genetically modified microorganisms during prolonged bioreactor operations is one of the major problems to be overcome in the production of recombinant proteins. The use of flow cytometry to monitor a fermentation process with recombinant cells in a CSTR is reported here. This technique has been applied to determine the fraction of plasmid-bearing cells (P+) of a recombinant Saccharomyces cerevisiae strain harboring the EXG1 gene in a continuous stirred tank bioreactor with a working volume of 2 L. The different levels in the expression of the EXG1 gene, which encodes the enzyme exo-beta-glucanase, were used to determine the P+ fraction. Other parameters such as viability, cellular protein, cell size and structure were also monitored using flow cytometry. This technique has two main advantages over the conventional method of determining the P+ fraction (plating in selective and non-selective solid media): (a) it takes a very short period of time to obtain a measurement that provides multiple parametric information; and (b) it is more representative of the bioreactor cell population since it can analyze thousands of cells in the same sample. A continuous operation (432 h) with the recombinant strain in a CSTR was carried out to test the application of this technique. Measurements of cellular exo-beta-glucanase activity and cellular protein content closely correlates to the measured fraction of plasmid-containing cells in the population. Moreover, the standard deviation of the fraction of P+ cells determined using this technique was very low (about 2%). Recombinant protein production also increased the size of the yeast cells, whereas the recombinant cells also had a more complex internal structure than the non-recombinant host strain.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lú Chau T, Guillán A, Roca E, Núñez MJ, Lema JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference