Reference: Cahuzac B, et al. (2001) The solution structure of an AlcR-DNA complex sheds light onto the unique tight and monomeric DNA binding of a Zn(2)Cys(6) protein. Structure 9(9):827-36

Reference Help

Abstract


Background: In Aspergillus nidulans, the transcription activator AlcR mediates specific induction of a number of the genes of the alc cluster. This cluster includes genes involved in the oxidation of ethanol and other alcohols to acetate. The pattern of binding and of transactivation of AlcR is unique within the Zn(2)Cys(6) family. The structural bases for these specificities have not been analyzed at the atomic level until now.

Results: We have used NMR spectroscopy and restrained molecular dynamics to determine a set of structures of the AlcR DNA binding domain [AlcR(1-60)] in complex with a 10-mer DNA duplex. Analysis of the structures reveals specific interactions between AlcR and DNA common to the other known zinc clusters. In addition, the involvement of the N-terminal residues upstream of the AlcR zinc cluster in DNA binding is clearly highlighted, and the pivotal role of R6 is confirmed. Totally unprecedented specific and nonspecific contacts of two additional regions of the protein with the DNA are demonstrated. The differences with the available crystallographic structures of other zinc binuclear cluster proteins-DNA complexes are analyzed.

Conclusions: The structures of the AlcR(1-60)-DNA complex provide the basis for a better understanding of some of the specificities of the AlcR system: the DNA consensus recognition sequence--usually the triplet CGG--is extended to five base pairs, AlcR acts as a monomer, and additional contacts inside and outside the DNA binding domain in the major and minor groove are observed. These extensive interactions stabilize the AlcR monomer to its cognate DNA site.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Cahuzac B, Cerdan R, Felenbok B, Guittet E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference