Reference: Panwar SL, et al. (2001) CaALK8, an alkane assimilating cytochrome P450, confers multidrug resistance when expressed in a hypersensitive strain of Candida albicans. Yeast 18(12):1117-29

Reference Help

Abstract


We report the isolation of a novel C. albicans gene designated CaALK8, by its ability to complement drug hypersensitivity of a pdr5 (ABC: ATP-binding cassette drug extrusion pump) null mutant of S. cerevisiae (JG436). CaALK8 in JG436 conferred resistance to drugs such as cycloheximide (CYH), fluconazole (FCZ), O-phenanthroline (PHE) and 4-nitroquinoline oxide (NQO). The gene was so designated because its sequence was identical to a partial sequence entry named as ALK8 in the Candida database (http://alces.med.umn.edu/candida.html). CaALK8 encodes for a putative 515 amino acid protein highly homologous to alkane-inducible cytochromes P450 (CYP52 gene family) of C. maltosa and C. tropicalis. The ability of CaALK8 to confer drug resistance was also established by its expression in another drug-hypersensitive strain of S. cerevisiae (AD 1234568), which was deleted in seven ABC efflux pumps. The homozygous disruption of CaALK8 in a wild-type C. albicans strain (CAI4) did not result in altered drug susceptibilities. The overexpression of CaALK8 in CAI4 resulted in only FCZ resistance. However, a distinct MDR phenotype was evident when CaALK8 was overexpressed in a drug-hypersensitive C. albicans strain disrupted in both CDR1 and CDR2 (ABC drug extrusion pumps of C. albicans). Alk8p, similar to other Alk proteins from C. maltosa and C. tropicalis, could hydroxylate alkanes and fatty acids. In this study we demonstrate that several drugs could compete with the hydroxylation activity by directly interacting with CaAlk8p. Taken together, our results suggest that a member of the CYP52 gene family could mediate MDR in C. albicans, although it does not seem to be involved in the development of azole resistance in clinical isolates. The nucleotide sequence reported in this paper has been submitted to GenBank under Accession No. Y14766.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Panwar SL, Krishnamurthy S, Gupta V, Alarco AM, Raymond M, Sanglard D, Prasad R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference