Reference: Sekine A, et al. (2001) Identification of single-nucleotide polymorphisms (SNPs) of human N-acetyltransferase genes NAT1, NAT2, AANAT, ARD1 and L1CAM in the Japanese population. J Hum Genet 46(6):314-9

Reference Help

Abstract


By direct sequencing of regions of the human genome containing five genes belonging to the acetyltransferase family, arylamine N-acetyltransferase (NAT1), arylamine N-acetyltransferase (NAT2), arylalkylamine N-acetyltransferase (AANAT), L1 cell adhesion molecule (L1CAM), and the human homolog of Saccharomyces cerevisiae N-acetyltransferase ARD1, we identified 53 single-nucleotide polymorphisms (SNPs) and two insertion/ deletion polymorphisms in 48 healthy Japanese volunteers. NAT1 and NAT2 are so-called drug-metabolizing enzymes. In the NAT1 gene we found two SNPs and a 3-bp insertion/ deletion polymorphism that corresponded to the NAT1*3, *10, and *18A/*18B alleles reported in other populations. The frequencies of NAT1* alleles in our Japanese subjects were 52.6% for NAT1*4, 1.0% for NAT1*3, 40.6% for NAT1*10, 2.6% for NAT1*18A and 3.1% for NAT1*18B. In the NAT2 gene we found 32 SNPs and a 1-bp insertion/ deletion polymorphism; 6 SNPs within the coding region were reported previously and belonged to the slow acetylator group (NAT2*5, NAT2*6 and NAT2*7), and 2 of the 8 SNPs in the 5' flanking region were reported in the dbSNP of GenBank, but the remaining 24 SNPs and the insertion/deletion polymorphism were novel. The frequencies of NAT2* alleles in Japanese (51.3% for NAT2*4, 1.6% for *5B, 26.1% for *6A, 2.2% for *6B, 1.2% for *7A, 10.1% for *7B, 7.4% for *12A, and 1.1% for *13) were significantly different from those reported in Caucasian populations. In the AANAT gene we found 4 novel SNPs: 2 in the 5' flanking region, 1 in exon 4, and 1 in intron 3. In the two genes belonging to the N-terminal N-acetyltransferase family, we identified 9 SNPs, 7 of them novel, for ARD1, and six novel SNPs for L1CAM. Variations at these loci may contribute to an understanding of the way in which different genotypes may affect the activities of human N-acetyltransferases, especially as regards the therapeutic efficacy of certain drugs and antibiotics.

Reference Type
Journal Article
Authors
Sekine A, Saito S, Iida A, Mitsunobu Y, Higuchi S, Harigae S, Nakamura Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence