Introduction: Comprehension of cell cycle regulation mechanisms has progressed very quickly these past few years and regulators of the cell cycle have gained widespread importance in cancer. This review first summarizes major advances in the understanding of the control of cell cycle mechanisms. Examples of how this control is altered in tumoral cells are then described.
Current knowledge and key points: The typical mammalian cell cycle consists of four distinct phases occurring in a well-defined order, each of which should be completed successfully before the next begins. Progression of eukaryotic cells through major cell cycle transitions is mediated by sequential assembly and activation of a family of serine-threonine protein kinases, the cyclin dependent kinases (CDK). The timing of their activation is determined by their post-translational modifications (phosphorylations/dephosphorylations), and by the association of a protein called cyclin, which is the regulatory subunit of the kinase complex. The cyclin family is divided into two main classes. The 'G1 cyclins' include cyclins C, D1-3, and E, and their accumulation is rate-limiting for progression from the G1 to S phase. The 'mitotic or G2 cyclins', which include cyclin A and cyclin B, are involved in the control of G2/M transition and mitosis. The cyclins bind to and activate the CDK, which leads to phosphorylation (and then inhibition) of the tumor suppressor protein, pRb. pRb controls commitment to progress from the G1 to S phase, at least in part by repressing the activity of the E2F transcription factors known to promote cell proliferation. Both the D-type cyclins and their partner kinases CDK4/6 have proto-oncogenic properties, and their activity is carefully regulated at multiple levels including negative control by two families of CDK inhibitors. While members of the INK4 family (p16INK4A, p15INK4B, p18INK4C, p19INK4D) interact specifically with CDK4 and CDK6, the CIP/KIP inhibitors p21CIP1/WAF1, p27KIP1 and p57KIP2 inhibit a broader spectrum of CDK. The interplay between p16INK4A, cyclin D/CDK, and pRb/E2F together constitute a functional unit collectively known as the 'pRb pathway'. Each of the major components of this mechanism may become deregulated in cancer, and accumulating evidence points to the 'pRb pathway' as a candidate obligatory target in multistep oncogenesis of possibly all human tumor types.
Future prospects and projects: Major advances in the understanding of cell cycle regulation mechanisms provided a better knowledge of the molecular interactions involved in human cancer. This progress has led to the promotion of new therapeutic agents presently in clinical trials or under development. Moreover, the components of the cell cycle are probably involved in other non-cancerous diseases and their role must be defined.
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|