Reference: Beaudoin J and Labbé S (2001) The fission yeast copper-sensing transcription factor Cuf1 regulates the copper transporter gene expression through an Ace1/Amt1-like recognition sequence. J Biol Chem 276(18):15472-80

Reference Help

Abstract


Transcriptional regulation of genes encoding critical components of copper transport is essential for copper homeostasis and growth in yeast. Analysis of regulatory regions in the promoter of the ctr4(+) copper transporter gene in fission yeast Schizosaccharomyces pombe reveals the identity of a conserved copper-signaling element (CuSE), which is recognized by the transcription factor Cuf1. We demonstrate that CuSE is necessary for transcriptional activation in response to copper deprivation conditions. Interestingly, the CuSE element bears a strong sequence similarity to the recognition site, denoted MRE (metal regulatory element), which is recognized by a distinct class of copper sensors required for copper detoxification, including Ace1 from Saccharomyces cerevisiae and Amt1 from Candida glabrata. When a consensus MRE from S. cerevisiae is introduced into S. pombe, transcription is induced by copper deprivation in a Cuf1-dependent manner, similar to regulation by Mac1, the nuclear sensor for regulating the expression of genes encoding components involved in copper transport in S. cerevisiae. UV-cross-linking experiments show that the Cuf1 protein directly binds the CuSE. These results demonstrate that the Cuf1 nutritional copper-sensing factor possesses a module that functions similarly to domains found in the Ace1/Amt1 class of metalloregulatory factors, which allows the protein to act through a closely related MRE-like sequence to regulate copper transport gene expression in S. pombe.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Beaudoin J, Labbé S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference