Reference: Meganathan R (2001) Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 61:173-218

Reference Help

Abstract


The benzoquinone ubiquinone (coenzyme Q) and the naphthoquinones menaquinone (vitamin K2) and demethylmenaquinone are derived from the shikimate pathway, which has been described as a "metabolic tree with many branches." Menaquinone (MK) is considered a vitamin, but coenzyme (Q) is not; MK is an essential nutrient (it cannot be synthesized by mammals), whereas Q is not considered an essential nutrient since it can be synthesized from the amino acid tyrosine. The quinone nucleus of Q is derived directly from chorismate, whereas that of MK is derived from chorismate via isochorismate. The prenyl side chain of both quinones is derived from prenyl diphosphate, and the methyl groups are derived from S-adenosylmethionine. MK biosynthesis requires 2-ketoglutarate and the cofactors ATP, coenzyme A (CoASH), and thiamine pyrophosphate. In spite of the fact that both quinones originate from the shikimate pathway, there are important differences in their biosynthesis. In MK biosynthesis, the prenyl side chain is introduced in the next to last step, which is accompanied by loss of the carboxyl group, whereas in Q biosynthesis, the prenyl side chain is introduced at the second step, with retention of the carboxyl group. In MK biosynthesis, all the reactions of the pathway up to the prenylation (next to last step) are carried out by soluble enzymes, whereas all the enzymes involved in Q biosynthesis except the first are membrane bound. In MK biosynthesis the last step is a C-methylation; in Q biosynthesis, the last step is an O-methylation. In Q biosynthesis a second C-methylation and O-methylation take place in the middle part of the pathway. In spite of the fact that Q and MK biosynthesis diverges at chorismate, the C-methylations involved in both pathways are carried out by the same enzyme. Finally, Q biosynthesis under aerobic conditions requires molecular oxygen; anaerobic biosynthesis of Q and MK incorporates oxygen atoms derived from water. The current status of the pathways with particular emphasis on the reaction mechanisms, is discussed in this review.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Meganathan R
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference