Reference: Yao JL, et al. (2001) Functional conservation of phosphorylation-specific prolyl isomerases in plants. J Biol Chem 276(17):13517-23

Reference Help

Abstract


The phosphorylation-specific peptidyl prolyl cis/trans isomerase (PPIase) Pin1 in humans and its homologues in yeast and animal species play an important role in cell cycle regulation. These PPIases consist of an NH(2)-terminal WW domain that binds to specific phosphoserine- or phosphothreonine-proline motifs present in a subset of phosphoproteins and a COOH-terminal PPIase domain that specifically isomerizes the phosphorylated serine/threonine-proline peptide bonds. Here, we describe the isolation of MdPin1, a Pin1 homologue from the plant species apple (Malus domestica) and show that it has the same phosphorylation-specific substrate specificity and can be inhibited by juglone in vitro, as is the case for Pin1. A search in the plant expressed sequence tag data bases reveals that the Pin1-type PPIases are present in various plants, and there are multiple genes in one organism, such as soybean (Glycine max) and tomato (Lycopersicon esculentum). Furthermore, all these plant Pin1-type PPIases, including AtPin1 in Arabidopsis thaliana, do not have a WW domain, but all contain a four-amino acid insertion next to the phospho-specific recognition site of the active site. Interestingly, like Pin1, both MdPin1 and AtPin1 are able to rescue the lethal mitotic phenotype of a temperature-sensitive mutation in the Pin1 homologue ESS1/PTF1 gene in Saccharomyces cerevisiae. However, deleting the extra four amino acid residues abolished the ability of AtPin1 to rescue the yeast mutation under non-overexpression conditions, indicating that these extra amino acids may be important for mediating the substrate interaction of plant enzymes. Finally, expression of MdPin1 is tightly associated with cell division both during apple fruit development in vivo and during cell cultures in vitro. These results have demonstrated that phosphorylation-specific PPIases are highly conserved functionally in yeast, animal, and plant species. Furthermore, the experiments suggest that although plant Pin1-type enzymes do not have a WW domain, they may fulfill the same functions as Pin1 and its homologues do in other organisms.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Yao JL, Kops O, Lu PJ, Lu KP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference