Reference: Sinha J, et al. (2000) Extractive fermentation for improved production of endoglucanase by an intergeneric fusant of Trichoderma reesei/Saccharomyces cerevisiae using aqueous two-phase system. Biochem Eng J 6(3):163-175

Reference Help

Abstract


Extractive aqueous two-phase fermentation of endoglucanase, a key enzyme for the conversion of cellulosic substances to fermentable sugars, from an intergeneric fusant of Trichoderma reesei/Saccharomyces cerevisiae is a meaningful approach for better production and simple recovery of this enzyme. A phase composition of 6.5% (w/w) dextran and 7.5% (w/w) polyethylene glycol 6000, having a partition coefficient of 2.89 and 1.31 for endoglucanase from an intergeneric fusant of T. reesei/S. cerevisiae and T. reesei (WT) (being a control in this study), respectively, was chosen for extractive fermentation of the enzyme. Endoglucanase production is higher in medium containing polyethylene glycol (PEG) 6000 than in medium without PEG 6000. Comparative analysis of endoglucanase fermentation by fusant and T. reesei was carried out in shake culture and environment-controlled bioreactor conditions. The fusant produced 0.43U of endoglucanase (overall production: 0.34U) in the top phase of an aqueous two-phase system (ATPS), compared to 0.3U in medium without the phase system in shake culture. In a batch reactor, the endoglucanase level for the fusant in the top phase of ATPS was 0.49U (overall production: 0.40U), compared to 0.38U produced in medium without aqueous two-phase components. To corroborate this study, T. reesei produced 8.41U of endoglucanase (overall production: 5.96U) in the top phase of ATPS, compared to 7.18U in the medium without the phase system in shake culture. On the other hand, in a batch bioreactor, T. reesei produced 10.13U of endoglucanase (overall production: 6.90U) in the top phase of ATPS, compared to 8.56U of the enzyme in medium without aqueous two-phase components. The lower overall enzyme production by T. reesei in the two-phase system might be due to limitation in oxygen transfer to the dispersed phase where the enzyme is produced. A higher cell concentration and a reduced lag phase was obtained in ATPS, compared to a similar medium without phase forming polymers for both the intergeneric fusant of T. reesei/S. cerevisiae and T. reesei.

Reference Type
Journal Article
Authors
Sinha J, Dey PK, Panda T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference