Reference: Steinberg SJ, et al. (2000) Very long-chain acyl-CoA synthetases. Human "bubblegum" represents a new family of proteins capable of activating very long-chain fatty acids. J Biol Chem 275(45):35162-9

Reference Help

Abstract


Activation by thioesterification to coenzyme A is a prerequisite for most reactions involving fatty acids. Enzymes catalyzing activation, acyl-CoA synthetases, have been classified by their chain length specificities. The most recently identified family is the very long-chain acyl-CoA synthetases (VLCS). Although several members of this group are capable of activating very long-chain fatty acids (VLCFA), one is a bile acid-CoA synthetase, and others have been characterized as fatty acid transport proteins. It was reported that the Drosophila melanogaster mutant bubblegum (BGM) had elevated VLCFA and that the product of the defective gene had sequence homology to acyl-CoA synthetases. Therefore, we cloned full-length cDNA for a human homolog of BGM, and we investigated the properties of its protein product, hsBG, to determine whether it had VLCS activity. Northern blot analysis showed that hsBG is expressed primarily in brain. Compared with vector-transfected cells, COS-1 cells expressing hsBG had increased acyl-CoA synthetase activity with either long-chain fatty acid (2.4-fold) or VLCFA (2.6-fold) substrates. Despite this increased VLCFA activation, hsBG-expressing cells did not have increased rates of VLCFA degradation. Confocal microscopy showed that hsBG had a cytoplasmic localization in some COS-1 cells expressing the protein, whereas it appeared to associate with plasma membrane in others. Fractionation of these cells revealed that most of the hsBG-dependent acyl-CoA synthetase activity was soluble and not membrane-bound. Immunoaffinity-purified hsBG from transfected COS-1 cells was enzymatically active. hsBG and hsVLCS are only 15% identical, and comparison with sequences of two conserved motifs from all known families of acyl-CoA synthetases revealed that hsBG along with the D. melanogaster and murine homologs comprise a new family of acyl-CoA synthetases. Thus, two protein families are now known that contain enzymes capable of activating VLCFA. Because hsBG is expressed in brain but previously described VLCSs were not highly expressed in this organ, hsBG may play a central role in brain VLCFA metabolism and myelinogenesis.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Steinberg SJ, Morgenthaler J, Heinzer AK, Smith KD, Watkins PA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference