Reference: Medintz I, et al. (2000) A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity. Biochemistry 39(15):4518-26

Reference Help

Abstract


Maltose permease is required for maltose transport into Saccharomyces cells. Glucose addition to maltose-fermenting cells causes selective delivery of this integral plasma membrane protein to the yeast vacuole via endocytosis for degradation by resident proteases. This glucose-induced degradation is independent of the proteasome but requires ubiquitin and certain ubiquitin conjugating enzymes. We used mutation analysis to identify target sequences in Mal61/HA maltose permease involved in its selective glucose-induced degradation. A nonsense mutation was introduced at codon 581, creating a truncated functional maltose permease. Additional missense mutations were introduced into the mal61/HA-581NS allele, altering potential phosphorylation and ubiquitination sites. No significant effect was seen on the rate of glucose-induced degradation of these mutant proteins. Deletion mutations were constructed, removing residues 2-30, 31-60, 61-90, and 49-78 of the N-terminal cytoplasmic domain, as well as a missense mutation of a dileucine motif. Results indicate that the proline-, glutamate-, aspartate-, serine-, and threonine-rich (PEST) sequence found in the N-terminal cytoplasmic domain, particularly residues 49-78, is required for glucose-induced degradation of Mal61/HAp and for the rapid glucose-induced inactivation of maltose transport activity. The decreased rate of glucose-induced degradation correlates with a decrease in the level of glucose-induced ubiquitination of the DeltaPEST mutant permease. In addition, newly synthesized mutant permease proteins lacking residues 49-78 or carrying an alteration in the dileucine motif, residues 69 and 70, are resistant to glucose-induced inactivation of maltose transport activity. This N-terminal PEST-like sequence is the target of both the Rgt2p-dependent and the Glc7p-Reg1p-dependent glucose signaling pathways.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Medintz I, Wang X, Hradek T, Michels CA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference