Reference: Ranocha P, et al. (2000) Characterization and functional expression of cDNAs encoding methionine-sensitive and -insensitive homocysteine S-methyltransferases from Arabidopsis. J Biol Chem 275(21):15962-8

Reference Help

Abstract


Plants synthesize S-methylmethionine (SMM) from S-adenosylmethionine (AdoMet), and methionine (Met) by a unique reaction and, like other organisms, use SMM as a methyl donor for Met synthesis from homocysteine (Hcy). These reactions comprise the SMM cycle. Two Arabidopsis cDNAs specifying enzymes that mediate the SMM --> Met reaction (SMM:Hcy S-methyltransferase, HMT) were identified by homology and authenticated by complementing an Escherichia coli yagD mutant and by detecting HMT activity in complemented cells. Gel blot analyses indicate that these enzymes, AtHMT-1 and -2, are encoded by single copy genes. The deduced polypeptides are similar in size (36 kDa), share a zinc-binding motif, lack obvious targeting sequences, and are 55% identical to each other. The recombinant enzymes exist as monomers. AtHMT-1 and -2 both utilize l-SMM or (S,S)-AdoMet as a methyl donor in vitro and have higher affinities for SMM. Both enzymes also use either methyl donor in vivo because both restore the ability to utilize AdoMet or SMM to a yeast HMT mutant. However, AtHMT-1 is strongly inhibited by Met, whereas AtHMT-2 is not, a difference that could be crucial to the control of flux through the HMT reaction and the SMM cycle. Plant HMT is known to transfer the pro-R methyl group of SMM. This enabled us to use recombinant AtHMT-1 to establish that the other enzyme of the SMM cycle, AdoMet:Met S-methyltransferase, introduces the pro-S methyl group. These opposing stereoselectivities suggest a way to measure in vivo flux through the SMM cycle.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Ranocha P, Bourgis F, Ziemak MJ, Rhodes D, Gage DA, Hanson AD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference