Reference: Lew DJ (2000) Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae. Curr Opin Genet Dev 10(1):47-53

Reference Help

Abstract


Cytoskeletal organization is crucial for several aspects of cell-cycle progression but cytoskeletal elements are quite sensitive to environmental perturbations. Two novel checkpoint controls monitor the function of the actin and microtubule systems in budding yeast and operate to delay cell-cycle progression in response to cytoskeletal perturbations. In cells whose actin cytoskeleton has been perturbed, bud formation is frequently delayed and the morphogenesis checkpoint introduces a compensatory delay of nuclear division until a bud has been formed. In cells whose microtubule cytoskeleton has been perturbed, anaphase spindle elongation often occurs entirely within the mother cell, and the post-anaphase nuclear migration checkpoint introduces a compensatory delay of cytokinesis until one pole of the anaphase nucleus enters the bud. Recent studies indicate that regulators of entry into mitosis are localized to the daughter side of the mother-bud neck whereas regulators of exit from mitosis are localized to the spindle pole bodies. Thus, specific cell-cycle regulators are well-placed to monitor whether a cell has formed a bud and whether a daughter nucleus has been delivered accurately to the bud following mitosis.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Lew DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence