Reference: Obuchi K, et al. (2000) Calorimetric characterization of critical targets for killing and acquired thermotolerance in yeast. Yeast 16(2):111-9

Reference Help

Abstract


We characterized thermal behaviours of cellular components by differential scanning calorimetry (DSC) in order to investigate how Saccharomyces cerevisiae cells acquire thermotolerance after heat shock or in stationary phase. Whole-cell DSC profiles consisted of at least five endothermic components over the range 45-75 degrees C for exponentially growing, heat-shocked and stationary-phase cells. In these profiles, we attempted to localize the endothermic profiles due to denaturation of the two critical targets which were predicted by using the Arrhenius parameters of hyperthermic killing of the cells (Obuchi et al., 1998). This prediction indicated that (a) the heat shock stabilized one family of targets and destabilized the other, while (b) arrest in stationary phase stabilized both targets. Therefore, the heat-shock response does not stabilize all cellular components, and arrest in stationary phase appears to stabilize cellular components in a different manner from the heat-shock response. It was not possible unambiguously to resolve the profiles of the critical targets in the DSC scans of whole cells. Components I (T(m)=49.7 degrees C) and II (T(m)=56.1 degrees C) may both include denaturations of critical targets 1 (T(m)=55.4 degrees C) and 2 (T(m)=53.0 degrees C) in exponential cells. Components I and II were both stabilized (T(m)=53.5 and 57.2 degrees C, respectively) in heat-shocked cells. Sub-cellular fractions suspended in 1.2 M trehalose solution, which mimics the cytosol in tolerant cells, were more stable than those in 0.6 M KCl, which mimics the cytosol in sensitive cells. The microsomal fractions in KCl and trehalose had endothermic profiles in similar temperature ranges to those predicted for sensitive and tolerant cells, respectively. This agreement suggests that the microsomal fraction may contain critical targets, and that trehalose accumulation in the heat-shocked and in the stationary phase yeast cells is a stabilizer of cellular components.

Reference Type
Journal Article
Authors
Obuchi K, Iwahashi H, Lepock JR, Komatsu Y
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference