Reference: Care RS, et al. (1999) The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34(4):792-8

Reference Help

Abstract


A central technique used to investigate the role of a Candida albicans gene is to study the phenotype of a cell in which both copies of the gene have been deleted. To date, such investigations can only be undertaken if the gene is not essential. We describe the use of the Candida albicans MET3 promoter to express conditionally an essential gene, so that the consequences of depletion of the gene product may be investigated. The effects of environmental conditions on its expression were investigated, using GFP as a reporter gene. The promoter showed an approximately 85-fold range of expression, according to the presence or absence of either methionine or cysteine in concentrations in excess of 1 mM. In the presence of either amino acid, expression was reduced to levels that were close to background. We used URA3 as a model to demonstrate that the MET3 promoter could control the expression of an essential gene, provided that a mixture of both methionine and cysteine was used to repress the promoter. We describe an expression vector that may be used to express any gene under the control of the MET3 promoter and a vector that may be used to disrupt a gene and simultaneously place an intact copy under the control of the MET3 promoter. During the course of these experiments, we discovered that directed integration into the RP10 locus gives a high frequency of transformation, providing a means to solve a long-standing problem in this field.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Care RS, Trevethick J, Binley KM, Sudbery PE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference