Reference: DeVit MJ and Johnston M (1999) The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 9(21):1231-41

Reference Help

Abstract


Background: Mig1 is a transcriptional repressor responsible for glucose repression of many genes in the budding yeast Saccharomyces cerevisiae. Glucose regulates Mig1 function by affecting its phosphorylation, which is catalyzed by the Snf1 protein kinase. Phosphorylation alters the subcellular localization of Mig1, causing it to be nuclear when glucose is present, and cytoplasmic when glucose is absent.

Results: Here, we report that Msn5, a member of the importin beta family of nuclear transport receptors, is required to export Mig1 from the nucleus when glucose is removed. Mig1 and Msn5 interacted in a yeast two-hybrid assay. Within the portion of Mig1 that regulates its nuclear transport, we found a region that directed its nuclear export. Within this region, two leucine-rich sequences similar to known nuclear export signals were not required for Mig1 export. The corresponding domain of the yeast Kluyveromyces lactis Mig1 conferred glucose-regulated Msn5-dependent protein export from the nucleus in S. cerevisiae. Sequence comparison with S. cerevisiae Mig1 revealed short patches of homology in K. lactis and K. marxianus Mig1 that might be Msn5-interaction domains. These regions overlapped with the serine residues predicted to be Snf1 phosphorylation sites, suggesting that Msn5 and Snf1 recognize similar sequences in Mig1. Altering these serines abolished glucose-dependent phosphorylation of Mig1 and caused it to be a constitutive repressor that was retained in the nucleus.

Conclusions: Mig1 contains a new nuclear export signal that is phosphorylated by Snf1 upon glucose removal, causing it to be recognized by the nuclear exportin Msn5 and carried out of the nucleus into the cytoplasm where it contributes to derepression of glucose-repressed genes.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
DeVit MJ, Johnston M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference