Reference: Prabhakar P, et al. (1999) Phosphoglycerate kinase--glyceraldehyde-3-phosphate dehydrogenase interaction: reaction rate studies. Indian J Biochem Biophys 36(2):88-100

Reference Help

Abstract


Rate studies using phosphoglycerate kinase (PGK)--glyceraldehyde-3-phosphate dehydrogenase (GPDH) enzyme pair have been carried out to distinguish between the two mechanisms of intermediate metabolite transfer, namely diffusion through the solvent versus "substrate channelling" within an enzyme-enzyme complex. A procedure has been described for the assay of the rates of PGK-catalysed and the PGK-GPDH coupled reactions at high (saturating) GPDH concentration. With PGKs of rabbit muscle and yeast, the coupled reaction proceeded faster than the PGK-catalysed reaction. At a high salt concentration (0.5 M KCl), where a PGK-GPDH complex is known to dissociate, the two reactions proceeded at almost equal rates. At fixed PGK concentration, the rate of the coupled reaction at high (saturating) GPDH concentration varied with the nature (biological origin) of the latter enzyme. In the presence of 0.5 M KCl, the saturating rate values with different GPDHs were almost equal. The PGK-catalysed reaction exhibited typical Michaelian behaviour on varying the substrate concentrations (linear double reciprocal plots). The Km values for 3-PGA (0.51 mM) and ATP (0.40 mM) were independent of the concentration of the second substrate. The double reciprocal plots for the coupled reaction showed downward curvature, i.e. activation at higher substrate concentrations. The ratio of the rate of the coupled reaction: the rate of the PGK catalysed reaction was found to be a function of the nature of PGK, nature of GPDH, nature of buffer, pH, salt concentration and substrate concentrations. The ratio varied between close to unity at low substrate concentrations, to three when the Vmax values of the two reactions were compared. At low substrate concentrations, the rate of the coupled reaction became independent of the nature of GPDH. It has been suggested that in the PGK-GPDH pair, the intermediate metabolite (BPG) is transferred directly from one enzyme to the other within an enzyme-enzyme complex, except at high salt or low substrate concentrations. Under the latter conditions, data were consistent with metabolite transfer by diffusion. Implications of these results for coupled enzyme assays have been discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Prabhakar P, Malhotra OP, Kayastha AM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference