Reference: McAinsh AD, et al. (1999) DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr Biol 9(17):963-6

Reference Help

Abstract


In eukaryotic cells, surveillance mechanisms detect and respond to DNA damage by triggering cell-cycle arrest and inducing the expression of DNA-repair genes [1]. In budding yeast, a single DNA double-strand break (DSB) is sufficient to trigger cell-cycle arrest [2]. One highly conserved pathway for repairing DNA DSBs is DNA non-homologous end-joining (NHEJ), which depends on the DNA end-binding protein Ku [3]. NHEJ also requires the SIR2, SIR3 and SIR4 gene products [4] [5], which are responsible for silencing at telomeres and the mating-type loci [6]. Because of the link between NHEJ and the Sir proteins, we investigated whether DNA damage influences telomeric silencing. We found that DNA damage triggers the reversible loss of telomeric silencing and relocation of Sir3p from telomeres. Complete Sir3p relocation was triggered by a single DNA DSB, suggesting that the singal is amplified. Consistent with this idea, Sir3p relocation depended on the DNA damage-signalling components Ddc1p and Mec1p. Thus, signalling of DNA damage may release Sir3p from telomeres and permit its subsequent association with other nuclear subdomains to regulate transcription, participate in DNA repair and/or enhance genomic stability by other mechanisms.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
McAinsh AD, Scott-Drew S, Murray JA, Jackson SP
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference