Reference: Ko TP, et al. (1999) Structure of orthorhombic crystals of beef liver catalase. Acta Crystallogr D Biol Crystallogr 55(Pt 8):1383-94

Reference Help

Abstract


The growth mechanisms and physical properties of the orthorhombic crystal form of beef liver catalase were investigated using in situ atomic force microscopy (AFM). It was observed that the crystals grow in the <001> direction by an unusual progression of sequential two-dimensional nuclei of half unit-cell layers corresponding to the 'bottoms' and 'tops' of unit cells. These were easily discriminated by their alternating asymmetric shapes and their strong growth-rate anisotropy. This pattern has not previously been observed with other macromolecular crystals. Orthorhombic beef liver catalase crystals exhibit an extremely high defect density and incorporate great numbers of misoriented microcrystals, revealed intact by etching experiments, which may explain their marginal diffraction properties. To facilitate interpretation of AFM results in terms of intermolecular interactions, the structure of the orthorhombic crystals, having an entire tetramer of the enzyme as the asymmetric unit, was solved by molecular replacement using a model derived from a trigonal crystal form. It was subsequently refined by conventional techniques. Although the packing of molecules in the two unit cells was substantially different, with very few exceptions no significant differences in the molecular structures were observed. In addition, no statistically significant deviation from ideal 222 molecular symmetry appeared within the tetramer. The packing of molecules in the crystal revealed by X-ray analysis explained in a satisfying way the process of crystal growth revealed by AFM.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Ko TP, Day J, Malkin AJ, McPherson A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference