Reference: Scheiner-Bobis G and Schreiber S (1999) Glutamic acid 472 and lysine 480 of the sodium pump alpha 1 subunit are essential for activity. Their conservation in pyrophosphatases suggests their involvement in recognition of ATP phosphates. Biochemistry 38(29):9198-208

Reference Help

Abstract


P-type ATPases such as the Na+,K+-ATPase (sodium pump) hydrolyze ATP to pump ions through biological membranes against their electrochemical gradients. The mechanisms that couple ATP hydrolysis to the vectorial ion transport are not yet understood, but unveiling structures that participate in ATP binding and in the formation of the ionophore might help to gain insight into this process. Looking at the alpha- and beta-phosphates of ATP as a pyrophosphate molecule, we found that peptides highly conserved among all soluble inorganic pyrophosphatases are also present in ion-transporting ATPases. Included therein are Glu48 and Lys56 of the Saccharomyces cerevisiae pyrophosphatase (SCE1-PPase) that are essential for the activity of this enzyme and have been shown in crystallographic analysis to interact with phosphate molecules. To test the hypothesis that equivalent amino acids are also essential for the activity of ion-transporting ATPases, Glu472 and Lys480 of the sodium pump alpha 1 subunit corresponding to Glu48 and Lys56 of SCE1-PPase were mutated to various amino acids. Mutants of the sodium pump alpha1 subunit were expressed in yeast and analyzed for their ATPase activity and their ability to bind ouabain in the presence of either ATP, Mg2+, and Na+ or phosphate and Mg2+. All four mutants investigated, Glu472Ala, Glu472Asp, Lys480Ala, and Lys480Arg, display only a fraction of the ATPase activity obtained with the wild-type enzyme. The same applies with respect to their ability to bind ouabain, where maximum ouabain binding to the mutants accounts for only about 10% of the binding obtained with the wild-type enzyme. On the basis of our results, we conclude that Glu472 and Lys480 are essential for the activity of the sodium pump. Their function is probably to arrest the alpha- and beta-phosphate groups of ATP in a proper position prior to hydrolysis of the gamma-phosphate group. The identification of these amino acids as essential components of the ATP-recognizing mechanism of the pump has resulted in a testable hypothesis for the initial interactions of the sodium pump, and possibly of other P-type ATPases, with ATP.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Scheiner-Bobis G, Schreiber S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference