Reference: Gonzalez DS, et al. (1999) Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J Biol Chem 274(30):21375-86

Reference Help

Abstract


We have isolated a full-length cDNA clone encoding a human alpha1, 2-mannosidase that catalyzes the first mannose trimming step in the processing of mammalian Asn-linked oligosaccharides. This enzyme has been proposed to regulate the timing of quality control glycoprotein degradation in the endoplasmic reticulum (ER) of eukaryotic cells. Human expressed sequence tag clones were identified by sequence similarity to mammalian and yeast oligosaccharide-processing mannosidases, and the full-length coding region of the putative mannosidase homolog was isolated by a combination of 5'-rapid amplification of cDNA ends and direct polymerase chain reaction from human placental cDNA. The open reading frame predicted a 663-amino acid type II transmembrane polypeptide with a short cytoplasmic tail (47 amino acids), a single transmembrane domain (22 amino acids), and a large COOH-terminal catalytic domain (594 amino acids). Northern blots detected a transcript of approximately 2.8 kilobase pairs that was ubiquitously expressed in human tissues. Expression of an epitope-tagged full-length form of the human mannosidase homolog in normal rat kidney cells resulted in an ER pattern of localization. When a recombinant protein, consisting of protein A fused to the COOH-terminal luminal domain of the human mannosidase homolog, was expressed in COS cells, the fusion protein was found to cleave only a single alpha1,2-mannose residue from Man(9)GlcNAc(2) to produce a unique Man(8)GlcNAc(2) isomer (Man8B). The mannose cleavage reaction required divalent cations as indicated by inhibition with EDTA or EGTA and reversal of the inhibition by the addition of Ca(2+). The enzyme was also sensitive to inhibition by deoxymannojirimycin and kifunensine, but not swainsonine. The results on the localization, substrate specificity, and inhibitor profiles indicate that the cDNA reported here encodes an enzyme previously designated ER mannosidase I. Enzyme reactions using a combination of human ER mannosidase I and recombinant Golgi mannosidase IA indicated that that these two enzymes are complementary in their cleavage of Man(9)GlcNAc(2) oligosaccharides to Man(5)GlcNAc(2).

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Gonzalez DS, Karaveg K, Vandersall-Nairn AS, Lal A, Moremen KW
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference