Reference: Lowther WT, et al. (1999) Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Biochemistry 38(24):7678-88

Reference Help

Abstract


By improving the expression and purification of Escherichia coli methionine aminopeptidase (eMetAP) and using slightly different crystallization conditions, the resolution of the parent structure was extended from 2.4 to 1.9 A resolution. This has permitted visualization of the coordination geometry and solvent structure of the active-site dinuclear metal center. One solvent molecule (likely a mu-hydroxide) bridges the trigonal bipyramidal (Co1) and octahedral (Co2) cobalt ions. A second solvent (possibly a hydroxide ion) is bound terminally to Co2. A monovalent cation binding site was also identified about 13 A away from the metal center at an interface between the two subdomains of the protein. The first structure of a substrate-like inhibitor, (3R)-amino-(2S)-hydroxyheptanoyl-L-Ala-L-Leu-L-Val-L-Phe-OMe, bound to a methionine aminopeptidase, has also been determined. This inhibitor coordinates the metal center through four interactions as follows: (i) ligation of the N-terminal (3R)-nitrogen to Co2, (ii, iii) bridging coordination of the (2S)-hydroxyl group, and (iv) terminal ligation to Co1 by the keto oxygen of the pseudo-peptide linkage. Inhibitor binding occurs with the displacement of two solvent ligands and the expansion of the coordination sphere of Co1. In addition to the tetradentate, bis-chelate metal coordination, the substrate analogue forms hydrogen bonds with His79 and His178, two conserved residues within the active site of all MetAPs. To evaluate their importance in catalysis His79 and His178 were replaced with alanine. Both substitutions, but especially that of His79, reduce activity. The structure of the His79Ala apoenzyme and the comparison of its electronic absorption spectra with other variants suggest that the loss in activity is not due to a conformational change or a defective metal center. Two different reaction mechanisms are proposed and are compared to those of related enzymes. These results also suggest that inhibitors analogous to that reported here may be useful in preventing angiogenesis in cancer and in the treatment of microbial and fungal infections.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Lowther WT, Orville AM, Madden DT, Lim S, Rich DH, Matthews BW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence