Reference: Owsianka AM and Patel AH (1999) Hepatitis C virus core protein interacts with a human DEAD box protein DDX3. Virology 257(2):330-40

Reference Help

Abstract


Several studies have implicated hepatitis C virus (HCV) core in influencing the expression of host genes. To identify cellular factors with a possible role in HCV replication and pathogenesis, we looked for cellular proteins that interact with the viral core protein. A human liver cDNA library was screened in a yeast two-hybrid assay to identify cellular proteins that bind to core. Several positive clones were isolated, one of which encoded the C-terminal 253 amino acids of a putative RNA helicase, a DEAD box protein designated DDX3. Bacterially expressed glutathione-S-transferase-DDX3 fusion protein specifically pulled down in vitro translated and radiolabeled HCV core, confirming a direct interaction. Immunofluorescent staining of HeLa cells with a polyclonal antiserum showed that DDX3 is located predominantly in nuclear speckles and at low levels throughout the cytoplasm. In cells infected with a recombinant vaccinia virus expressing HCV structural proteins (core, E1, and E2), DDX3 and core colocalized in distinct spots in the perinuclear region of the cytoplasm. The regions of the proteins involved in binding were found by deletion analysis to be the N-terminal 59 amino acid residues of core and a C-terminal RS-like domain of DDX3. The human DDX3 is a putative RNA helicase and a member of a highly conserved DEAD box subclass that includes murine PL10, Xenopus An3, and yeast Ded1 proteins. Their role in RNA metabolism or gene expression is unknown. The significance of core-helicase interaction in HCV replication and pathogenesis is discussed.

Reference Type
Journal Article
Authors
Owsianka AM, Patel AH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence