Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button.
Gene Name | Description |
---|---|
HSP31 | Methylglyoxalase that converts methylglyoxal to D-lactate; involved in oxidative stress resistance, diauxic shift, and stationary phase survival; has similarity to E. coli Hsp31 and C. albicans Glx3p; member of the DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1 involved in Parkinson's disease and cancer; exists as a dimer and contains a putative metal-binding site; protein abundance increases in response to DNA replication stress |
HSP32 | Possible chaperone and cysteine protease; required for transcriptional reprogramming during the diauxic shift and for survival in stationary phase; similar to E. coli Hsp31 and S. cerevisiae Hsp31p, Hsp33p, and Sno4p; member of the DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1 involved in Parkinson's disease and cancer |
HSP33 | Possible chaperone and cysteine protease; required for transcriptional reprogramming during the diauxic shift and for survival in stationary phase; similar to E. coli Hsp31 and S. cerevisiae Hsp31p, Hsp32p, and Sno4p; member of the DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1 involved in Parkinson's disease and cancer |
SNO4 | Possible chaperone and cysteine protease; required for transcriptional reprogramming during the diauxic shift and for survival in stationary phase; similar to bacterial Hsp31 and yeast Hsp31p, Hsp32p, and Hsp33p; DJ-1/ThiJ/PfpI superfamily member; predicted involvement in pyridoxine metabolism; induced by mild heat stress and copper deprivation |