AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help

    Dataset: Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus [ChIP-Seq]

    External ID
    GSE217016
    Reference
    Meneu L, et al. (2025)
    Channels
    1
    Conditions
    54
    Description
    In eukaryotes, DNA-associated protein complexes co-evolve with genomic sequence to orchestrate chromatin folding into functional chromosomes. Here, we investigate the relationship between DNA sequence and the spontaneous loading and activity of chromatin components in the absence of co-evolutions. Using bacterial genomes integrated into S. cerevisiae, which diverged from yeast up to 1.5 billion years ago, we show that nucleosomes, cohesins and the transcriptional machinery can lead to the formation of two different chromatin archetypes, one being transcribed and the other silent. These two archetypes also form on eukaryotic exogenous sequences, and depend on sequence composition. They do not mix in the nucleus, leading to a bipartite nuclear compartmentalisation reminiscent of the organization of vertebrate nuclei. Our findings represent a significant advance in understanding the primary molecular mechanisms that govern the co-option or silencing of DNA sequences integrated into foreign genomes during natural horizontal gene transfers, or in synthetic genomics projects.
    Categories
    chromatin organization

    Conditions

    Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

    Condition External ID
    • Download (.txt)
    • Analyze

    Resources

    GEO

    • SGD
    • About
    • Blog
    • Help
    • Privacy Policy
    • Creative Commons License
    © Stanford University, Stanford, CA 94305.
    Back to Top