AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help

    Dataset: Gene Expression during Model Dough Fermentation after Freezing Preservation of S. cerevisiae Baker’s Yeast Cells

    External ID
    GSE101071
    Reference
    Watanabe D, et al. (2018)
    Channels
    1
    Conditions
    4
    Description
    Freeze-thaw stress causes various cellular damages, survival and proliferation defects, and metabolic alterations, although how cells cope with it is poorly understood. In this study, model dough fermentations using two different strains of Saccharomyces cerevisiae baker’s yeast were compared after two-week cell preservation in the refrigerator or in the freezer. As a result, one strain specifically exhibited a decreased fermentation rate after exposed to freeze-thaw stress. A DNA microarray analysis of the cells during fermentation revealed that the genes involved in oxidative phosphorylation were upregulated after the freeze-thawing process in the stress-sensitive strain, suggesting a metabolism switching from glycolysis to respiration. In the identical strain, however, most of the genes that encode the components of the proteasome complex were commonly downregulated, and ubiquitinated proteins were highly accumulated by freeze-thaw stress. In the cells with a laboratory-strain background, treatment with a proteasome inhibitor MG132 or deletion of each transcriptional activator gene for the proteasomal genes (RPN4, PDR1, or PDR3) led to a marked decrease in the rate of model dough fermentation using the frozen cells. Based on these data, degradation of freeze-thaw damaged proteins by proteasome may guarantee the high fermentation performance. Furthermore, a heterozygous dominant-negative PDR3 allele (A148T/A229V/H336R/L541P) was found in the diploid genome of the stress-sensitive baker’s yeast strain, which may be associated with the decreased fermentation rate. Removal of such responsible mutations may improve the freeze-thaw stress tolerance and the fermentation performance of baker’s yeast strains, as well as other industrial S. cerevisiae yeast strains.
    Categories
    heat shock, transcription

    Conditions

    Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

    Condition External ID
    • Download (.txt)
    • Analyze
    • SGD
    • About
    • Blog
    • Help
    • Privacy Policy
    • Creative Commons License
    © Stanford University, Stanford, CA 94305.
    Back to Top