Lawrimore J, et al. (2022) Polymer models reveal how chromatin modification can modulate force at the kinetochore. Mol Biol Cell 33(11):ar97 PMID:35704466
Lawrimore J, et al. (2021) The rDNA is biomolecular condensate formed by polymer-polymer phase separation and is sequestered in the nucleolus by transcription and R-loops. Nucleic Acids Res 49(8):4586-4598 PMID:33836082
Mishra PK, et al. (2021) R-loops at centromeric chromatin contribute to defects in kinetochore integrity and chromosomal instability in budding yeast. Mol Biol Cell 32(1):74-89 PMID:33147102
Lawrimore J, et al. (2018) Geometric partitioning of cohesin and condensin is a consequence of chromatin loops. Mol Biol Cell 29(22):2737-2750 PMID:30207827
Lianga N, et al. (2018) Cdk1 phosphorylation of Esp1/Separase functions with PP2A and Slk19 to regulate pericentric Cohesin and anaphase onset. PLoS Genet 14(3):e1007029 PMID:29561844
Hult C, et al. (2017) Enrichment of dynamic chromosomal crosslinks drive phase separation of the nucleolus. Nucleic Acids Res 45(19):11159-11173 PMID:28977453
Lawrimore J, et al. (2017) Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Mol Biol Cell 28(12):1701-1711 PMID:28450453
Mishra PK, et al. (2016) Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis. Mol Biol Cell 27(14):2286-300 PMID:27226485
Haase J, et al. (2013) A 3D map of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone. Curr Biol 23(19):1939-44 PMID:24076245
Anderson M, et al. (2009) Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. Mol Biol Cell 20(19):4131-9 PMID:19656849
Thrower DA, et al. (2003) Nuclear oscillations and nuclear filament formation accompany single-strand annealing repair of a dicentric chromosome in Saccharomyces cerevisiae. J Cell Sci 116(Pt 3):561-9 PMID:12508116
Perkins E, et al. (2001) Novel inhibitors of poly(ADP-ribose) polymerase/PARP1 and PARP2 identified using a cell-based screen in yeast. Cancer Res 61(10):4175-83 PMID:11358842
Beach DL, et al. (2000) The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 10(23):1497-506 PMID:11114516
Yeh E, et al. (2000) Dynamic positioning of mitotic spindles in yeast: role of microtubule motors and cortical determinants. Mol Biol Cell 11(11):3949-61 PMID:11071919
Maddox P, et al. (1999) Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. J Cell Biol 144(5):977-87 PMID:10085295
Shaw SL, et al. (1997) Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol 139(4):985-94 PMID:9362516
Yeh E, et al. (1995) Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 130(3):687-700 PMID:7622568
Yeh E, et al. (1986) Tightly centromere-linked gene (SPO15) essential for meiosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol 6(1):158-67 PMID:3537684
Yeh E and Bloom K (1985) Characterization of a tightly centromere-linked gene essential for meiosis in the yeast Saccharomyces cerevisiae. Basic Life Sci 36:231-42 PMID:3913414