AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Wolf DH
  • References

Author: Wolf DH


References 130 references


No citations for this author.

Download References (.nbib)

  • Berner N, et al. (2018) Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 87:751-782 PMID:29394096
    • SGD Paper
    • DOI full text
    • PubMed
  • Menssen R, et al. (2018) Regulation of the Gid ubiquitin ligase recognition subunit Gid4. FEBS Lett 592(19):3286-3294 PMID:30136317
    • SGD Paper
    • DOI full text
    • PubMed
  • Wolf DH and Menssen R (2018) Mechanisms of cell regulation - proteolysis, the big surprise. FEBS Lett 592(15):2515-2524 PMID:29790175
    • SGD Paper
    • DOI full text
    • PubMed
  • Amm I and Wolf DH (2016) Molecular mass as a determinant for nuclear San1-dependent targeting of misfolded cytosolic proteins to proteasomal degradation. FEBS Lett 590(12):1765-75 PMID:27173001
    • SGD Paper
    • DOI full text
    • PubMed
  • Amm I, et al. (2016) Characterization of protein quality control components via dual reporter-containing misfolded cytosolic model substrates. Anal Biochem 515:14-21 PMID:27670725
    • SGD Paper
    • DOI full text
    • PubMed
  • Amm I, et al. (2015) Absence of the Yeast Hsp31 Chaperones of the DJ-1 Superfamily Perturbs Cytoplasmic Protein Quality Control in Late Growth Phase. PLoS One 10(10):e0140363 PMID:26466368
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pfirrmann T, et al. (2015) RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development. PLoS One 10(3):e0120342 PMID:25793641
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Scazzari M, et al. (2015) Quality control of a cytoplasmic protein complex: chaperone motors and the ubiquitin-proteasome system govern the fate of orphan fatty acid synthase subunit Fas2 of yeast. J Biol Chem 290(8):4677-4687 PMID:25564609
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stolz A, et al. (2013) Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation. Proc Natl Acad Sci U S A 110(38):15271-6 PMID:23988329
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Menssen R, et al. (2012) Exploring the topology of the Gid complex, the E3 ubiquitin ligase involved in catabolite-induced degradation of gluconeogenic enzymes. J Biol Chem 287(30):25602-14 PMID:22645139
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stolz A and Wolf DH (2012) Use of CPY and its derivatives to study protein quality control in various cell compartments. Methods Mol Biol 832:489-504 PMID:22350908
    • SGD Paper
    • DOI full text
    • PubMed
  • Benitez EM, et al. (2011) Yos9, a control protein for misfolded glycosylated and non-glycosylated proteins in ERAD. FEBS Lett 585(19):3015-9 PMID:21871892
    • SGD Paper
    • DOI full text
    • PubMed
  • Braun B, et al. (2011) Gid9, a second RING finger protein contributes to the ubiquitin ligase activity of the Gid complex required for catabolite degradation. FEBS Lett 585(24):3856-61 PMID:22044534
    • SGD Paper
    • DOI full text
    • PubMed
  • Martinez Benitez E, et al. (2011) Mnl2, a novel component of the ER associated protein degradation pathway. Biochem Biophys Res Commun 414(3):528-32 PMID:21971548
    • SGD Paper
    • DOI full text
    • PubMed
  • Stolz A, et al. (2011) Cdc48: a power machine in protein degradation. Trends Biochem Sci 36(10):515-23 PMID:21741246
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbin L, et al. (2010) The Cdc48-Ufd1-Npl4 complex is central in ubiquitin-proteasome triggered catabolite degradation of fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 394(2):335-41 PMID:20206597
    • SGD Paper
    • DOI full text
    • PubMed
  • Eisele F, et al. (2010) Ubiquitylation in the ERAD Pathway. Subcell Biochem 54:136-48 PMID:21222279
    • SGD Paper
    • DOI full text
    • PubMed
  • Juretschke J, et al. (2010) The Hsp70 chaperone Ssa1 is essential for catabolite induced degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 397(3):447-52 PMID:20513352
    • SGD Paper
    • DOI full text
    • PubMed
  • Stolz A and Wolf DH (2010) Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. Biochim Biophys Acta 1803(6):694-705 PMID:20219571
    • SGD Paper
    • DOI full text
    • PubMed
  • Stolz A, et al. (2010) Dfm1 forms distinct complexes with Cdc48 and the ER ubiquitin ligases and is required for ERAD. Traffic 11(10):1363-9 PMID:20579315
    • SGD Paper
    • DOI full text
    • PubMed
  • Alberts SM, et al. (2009) Ubx4 modulates cdc48 activity and influences degradation of misfolded proteins of the endoplasmic reticulum. J Biol Chem 284(24):16082-16089 PMID:19359248
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schäfer A and Wolf DH (2009) Sec61p is part of the endoplasmic reticulum-associated degradation machinery. EMBO J 28(19):2874-84 PMID:19696741
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eisele F and Wolf DH (2008) Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett 582(30):4143-6 PMID:19041308
    • SGD Paper
    • DOI full text
    • PubMed
  • Kohlmann S, et al. (2008) Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation. J Biol Chem 283(24):16374-83 PMID:18436532
    • SGD Paper
    • DOI full text
    • PubMed
  • Santt O, et al. (2008) The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol Biol Cell 19(8):3323-33 PMID:18508925
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Park SH, et al. (2007) The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol Biol Cell 18(1):153-65 PMID:17065559
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eisele F, et al. (2006) Mutants of the deubiquitinating enzyme Ubp14 decipher pathway diversity of ubiquitin-proteasome linked protein degradation. Biochem Biophys Res Commun 350(2):329-33 PMID:17010312
    • SGD Paper
    • DOI full text
    • PubMed
  • Horak J and Wolf DH (2005) The ubiquitin ligase SCF(Grr1) is required for Gal2p degradation in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 335(4):1185-90 PMID:16112084
    • SGD Paper
    • DOI full text
    • PubMed
  • Kostova Z and Wolf DH (2005) Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J Cell Sci 118(Pt 7):1485-92 PMID:15769847
    • SGD Paper
    • DOI full text
    • PubMed
  • Schäfer A and Wolf DH (2005) Endoplasmic reticulum-associated protein quality control and degradation: genome-wide screen for ERAD components. Methods Mol Biol 301:289-92 PMID:15917640
    • SGD Paper
    • DOI full text
    • PubMed
  • Schäfer A and Wolf DH (2005) Yeast genomics in the elucidation of endoplasmic reticulum (ER) quality control and associated protein degradation (ERQD). Methods Enzymol 399:459-68 PMID:16338375
    • SGD Paper
    • DOI full text
    • PubMed
  • Schäfer A and Wolf DH (2005) Endoplasmic reticulum-associated protein quality control and degradation: screen for ERAD mutants after ethylmethane sulfonate mutagenesis. Methods Mol Biol 301:283-8 PMID:15917639
    • SGD Paper
    • DOI full text
    • PubMed
  • Wolf DH and Schäfer A (2005) CPY* and the power of yeast genetics in the elucidation of quality control and associated protein degradation of the endoplasmic reticulum. Curr Top Microbiol Immunol 300:41-56 PMID:16573236
    • SGD Paper
    • DOI full text
    • PubMed
  • Buschhorn BA, et al. (2004) A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett 577(3):422-6 PMID:15556621
    • SGD Paper
    • DOI full text
    • PubMed
  • Gnann A, et al. (2004) Cystic fibrosis transmembrane conductance regulator degradation depends on the lectins Htm1p/EDEM and the Cdc48 protein complex in yeast. Mol Biol Cell 15(9):4125-35 PMID:15215312
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hitt R and Wolf DH (2004) DER7, encoding alpha-glucosidase I is essential for degradation of malfolded glycoproteins of the endoplasmic reticulum. FEMS Yeast Res 4(8):815-20 PMID:15450188
    • SGD Paper
    • DOI full text
    • PubMed
  • Hitt R and Wolf DH (2004) Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS Yeast Res 4(7):721-9 PMID:15093775
    • SGD Paper
    • DOI full text
    • PubMed
  • Medicherla B, et al. (2004) A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep 5(7):692-7 PMID:15167887
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wolf DH (2004) From lysosome to proteasome: the power of yeast in the dissection of proteinase function in cellular regulation and waste disposal. Cell Mol Life Sci 61(13):1601-14 PMID:15224185
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wolf DH and Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695(1-3):19-31 PMID:15571806
    • SGD Paper
    • DOI full text
    • PubMed
  • Kostova Z and Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22(10):2309-17 PMID:12743025
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Regelmann J, et al. (2003) Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol Biol Cell 14(4):1652-63 PMID:12686616
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Taxis C, et al. (2003) Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 278(38):35903-13 PMID:12847107
    • SGD Paper
    • DOI full text
    • PubMed
  • Horak J, et al. (2002) Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J Biol Chem 277(10):8248-54 PMID:11773046
    • SGD Paper
    • DOI full text
    • PubMed
  • Jarosch E, et al. (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4(2):134-9 PMID:11813000
    • SGD Paper
    • DOI full text
    • PubMed
  • Taxis C, et al. (2002) ER-golgi traffic is a prerequisite for efficient ER degradation. Mol Biol Cell 13(6):1806-18 PMID:12058050
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Deak PM and Wolf DH (2001) Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J Biol Chem 276(14):10663-9 PMID:11139575
    • SGD Paper
    • DOI full text
    • PubMed
  • Horak J and Wolf DH (2001) Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transporter is sufficient to signal its internalization. J Bacteriol 183(10):3083-8 PMID:11325936
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jäger S, et al. (2001) Cic1, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4. EMBO J 20(16):4423-31 PMID:11500370
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ligr M, et al. (2001) The proteasomal substrate Stm1 participates in apoptosis-like cell death in yeast. Mol Biol Cell 12(8):2422-32 PMID:11514626
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schüle T, et al. (2000) Ubc8p functions in catabolite degradation of fructose-1, 6-bisphosphatase in yeast. EMBO J 19(10):2161-7 PMID:10811607
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bordallo J and Wolf DH (1999) A RING-H2 finger motif is essential for the function of Der3/Hrd1 in endoplasmic reticulum associated protein degradation in the yeast Saccharomyces cerevisiae. FEBS Lett 448(2-3):244-8 PMID:10218484
    • SGD Paper
    • DOI full text
    • PubMed
  • Groll M, et al. (1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci U S A 96(20):10976-83 PMID:10500111
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jäger S, et al. (1999) Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J Mol Biol 291(4):997-1013 PMID:10452902
    • SGD Paper
    • DOI full text
    • PubMed
  • Madeo F, et al. (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145(4):757-67 PMID:10330404
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Plemper RK and Wolf DH (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci 24(7):266-70 PMID:10390615
    • SGD Paper
    • DOI full text
    • PubMed
  • Plemper RK and Wolf DH (1999) Endoplasmic reticulum degradation. Reverse protein transport and its end in the proteasome. Mol Biol Rep 26(1-2):125-30 PMID:10363658
    • SGD Paper
    • DOI full text
    • PubMed
  • Plemper RK, et al. (1999) Re-entering the translocon from the lumenal side of the endoplasmic reticulum. Studies on mutated carboxypeptidase yscY species. FEBS Lett 443(3):241-5 PMID:10025940
    • SGD Paper
    • DOI full text
    • PubMed
  • Plemper RK, et al. (1999) Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J Cell Sci 112 ( Pt 22):4123-34 PMID:10547371
    • SGD Paper
    • DOI full text
    • PubMed
  • Simpson JC, et al. (1999) Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett 459(1):80-4 PMID:10508921
    • SGD Paper
    • DOI full text
    • PubMed
  • Bordallo J, et al. (1998) Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell 9(1):209-22 PMID:9437001
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dick TP, et al. (1998) Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 273(40):25637-46 PMID:9748229
    • SGD Paper
    • DOI full text
    • PubMed
  • Ditzel L, et al. (1998) Conformational constraints for protein self-cleavage in the proteasome. J Mol Biol 279(5):1187-91 PMID:9642094
    • SGD Paper
    • DOI full text
    • PubMed
  • Dürr G, et al. (1998) The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9(5):1149-62 PMID:9571246
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gueckel R, et al. (1998) Mutations in the yeast proteasome beta-type subunit Pre3 uncover position-dependent effects on proteasomal peptidase activity and in vivo function. J Biol Chem 273(31):19443-52 PMID:9677364
    • SGD Paper
    • DOI full text
    • PubMed
  • Hämmerle M, et al. (1998) Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J Biol Chem 273(39):25000-5 PMID:9737955
    • SGD Paper
    • DOI full text
    • PubMed
  • Lang T, et al. (1998) Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J 17(13):3597-607 PMID:9649430
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nussbaum AK, et al. (1998) Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci U S A 95(21):12504-9 PMID:9770515
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Plemper RK, et al. (1998) Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J Biol Chem 273(49):32848-56 PMID:9830032
    • SGD Paper
    • DOI full text
    • PubMed
  • Gerlinger UM, et al. (1997) Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol Biol Cell 8(12):2487-99 PMID:9398670
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Heinemeyer W, et al. (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 272(40):25200-9 PMID:9312134
    • SGD Paper
    • DOI full text
    • PubMed
  • Horak J and Wolf DH (1997) Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol 179(5):1541-9 PMID:9045811
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Plemper RK, et al. (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388(6645):891-5 PMID:9278052
    • SGD Paper
    • DOI full text
    • PubMed
  • Schlumpberger M, et al. (1997) AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae. J Bacteriol 179(4):1068-76 PMID:9023185
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sommer T and Wolf DH (1997) Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J 11(14):1227-33 PMID:9409541
    • SGD Paper
    • DOI full text
    • PubMed
  • Hiller MM, et al. (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273(5282):1725-8 PMID:8781238
    • SGD Paper
    • DOI full text
    • PubMed
  • Hilt W and Wolf DH (1996) Proteasomes: destruction as a programme. Trends Biochem Sci 21(3):96-102 PMID:8882582
    • SGD Paper
    • PubMed
  • Hilt W, et al. (1996) The proteasome and protein degradation in yeast. Adv Exp Med Biol 389:197-202 PMID:8861011
    • SGD Paper
    • DOI full text
    • PubMed
  • Knop M, et al. (1996) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15(4):753-63 PMID:8631297
    • SGD Paper
    • PMC full text
    • PubMed
  • Knop M, et al. (1996) N-Glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast 12(12):1229-38 PMID:8905927
    • SGD Paper
    • DOI full text
    • PubMed
  • Elias S, et al. (1995) Degradation of ornithine decarboxylase by the mammalian and yeast 26S proteasome complexes requires all the components of the protease. Eur J Biochem 229(1):276-83 PMID:7744041
    • SGD Paper
    • DOI full text
    • PubMed
  • Hilt W and Wolf DH (1995) Proteasomes of the yeast S. cerevisiae: genes, structure and functions. Mol Biol Rep 21(1):3-10 PMID:7565661
    • SGD Paper
    • DOI full text
    • PubMed
  • Riballo E, et al. (1995) Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis. J Bacteriol 177(19):5622-7 PMID:7559351
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rupp S and Wolf DH (1995) Biogenesis of the yeast vacuole (lysosome). The use of active-site mutants of proteinase yscA to determine the necessity of the enzyme for vacuolar proteinase maturation and proteinase yscB stability. Eur J Biochem 231(1):115-25 PMID:7628461
    • SGD Paper
    • DOI full text
    • PubMed
  • Schork SM, et al. (1995) Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation occurs via the ubiquitin pathway. J Biol Chem 270(44):26446-50 PMID:7592860
    • SGD Paper
    • DOI full text
    • PubMed
  • Büchler M, et al. (1994) Proteinase yscD (oligopeptidase yscD). Structure, function and relationship of the yeast enzyme with mammalian thimet oligopeptidase (metalloendopeptidase, EP 24.15). Eur J Biochem 219(1-2):627-39 PMID:8307027
    • SGD Paper
    • DOI full text
    • PubMed
  • Enenkel C, et al. (1994) PRE3, highly homologous to the human major histocompatibility complex-linked LMP2 (RING12) gene, codes for a yeast proteasome subunit necessary for the peptidylglutamyl-peptide hydrolyzing activity. FEBS Lett 341(2-3):193-6 PMID:7907993
    • SGD Paper
    • DOI full text
    • PubMed
  • Fischer M, et al. (1994) The 26S proteasome of the yeast Saccharomyces cerevisiae. FEBS Lett 355(1):69-75 PMID:7957966
    • SGD Paper
    • DOI full text
    • PubMed
  • Heinemeyer W, et al. (1994) PRE5 and PRE6, the last missing genes encoding 20S proteasome subunits from yeast? Indication for a set of 14 different subunits in the eukaryotic proteasome core. Biochemistry 33(40):12229-37 PMID:7918444
    • SGD Paper
    • DOI full text
    • PubMed
  • Richter-Ruoff B, et al. (1994) Degradation of the yeast MAT alpha 2 transcriptional regulator is mediated by the proteasome. FEBS Lett 354(1):50-2 PMID:7957900
    • SGD Paper
    • DOI full text
    • PubMed
  • Schork SM, et al. (1994) Catabolite inactivation of fructose-1,6-bisphosphatase in yeast is mediated by the proteasome. FEBS Lett 349(2):270-4 PMID:8050580
    • SGD Paper
    • DOI full text
    • PubMed
  • Thumm M, et al. (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349(2):275-80 PMID:8050581
    • SGD Paper
    • DOI full text
    • PubMed
  • Egner R, et al. (1993) Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae. J Biol Chem 268(36):27269-76 PMID:8262967
    • SGD Paper
    • PubMed
  • Enenkel C and Wolf DH (1993) BLH1 codes for a yeast thiol aminopeptidase, the equivalent of mammalian bleomycin hydrolase. J Biol Chem 268(10):7036-43 PMID:8463237
    • SGD Paper
    • PubMed
  • Finger A, et al. (1993) Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur J Biochem 218(2):565-74 PMID:8269947
    • SGD Paper
    • DOI full text
    • PubMed
  • Heinemeyer W, et al. (1993) PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chrymotryptic activity and degradation of ubiquitinated proteins. J Biol Chem 268(7):5115-20 PMID:8383129
    • SGD Paper
    • PubMed
  • Hilt W, et al. (1993) Studies on the yeast proteasome uncover its basic structural features and multiple in vivo functions. Enzyme Protein 47(4-6):189-201 PMID:7697119
    • SGD Paper
    • DOI full text
    • PubMed
  • Hilt W, et al. (1993) The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. J Biol Chem 268(5):3479-86 PMID:8381431
    • SGD Paper
    • PubMed
  • Knop M, et al. (1993) Vacuolar/lysosomal proteolysis: proteases, substrates, mechanisms. Curr Opin Cell Biol 5(6):990-6 PMID:8129953
    • SGD Paper
    • DOI full text
    • PubMed
  • Richter-Ruoff B and Wolf DH (1993) Proteasome and cell cycle. Evidence for a regulatory role of the protease on mitotic cyclins in yeast. FEBS Lett 336(1):34-6 PMID:8262212
    • SGD Paper
    • DOI full text
    • PubMed
  • Rupp S and Wolf DH (1993) Biogenesis of the yeast vacuole (lysosome). Signal sequence deletion of the vacuolar aspartic proteinase yscA does not block maturation of vacuolar proteinases. Biol Chem Hoppe Seyler 374(12):1109-15 PMID:8129856
    • SGD Paper
    • DOI full text
    • PubMed
  • Hirsch HH, et al. (1992) Biogenesis of the yeast vacuole (lysosome). Proteinase yscB contributes molecularly and kinetically to vacuolar hydrolase-precursor maturation. Eur J Biochem 207(3):867-76 PMID:1499562
    • SGD Paper
    • DOI full text
    • PubMed
  • Hirsch HH, et al. (1992) Biogenesis of the yeast vacuole (lysosome). Mutation in the active site of the vacuolar serine proteinase yscB abolishes proteolytic maturation of its 73-kDa precursor to the 41.5-kDa pro-enzyme and a newly detected 41-kDa peptide. Eur J Biochem 203(3):641-53 PMID:1735447
    • SGD Paper
    • DOI full text
    • PubMed
  • Richter-Ruoff B, et al. (1992) The proteasome/multicatalytic-multifunctional proteinase. In vivo function in the ubiquitin-dependent N-end rule pathway of protein degradation in eukaryotes. FEBS Lett 302(2):192-6 PMID:1321727
    • SGD Paper
    • DOI full text
    • PubMed
  • Schüller HJ, et al. (1992) Differential proteolytic sensitivity of yeast fatty acid synthetase subunits alpha and beta contributing to a balanced ratio of both fatty acid synthetase components. Eur J Biochem 203(3):607-14 PMID:1735446
    • SGD Paper
    • DOI full text
    • PubMed
  • Simeon A, et al. (1992) Ubiquitin, a central component of selective cytoplasmic proteolysis, is linked to proteins residing at the locus of non-selective proteolysis, the vacuole. FEBS Lett 301(2):231-5 PMID:1314742
    • SGD Paper
    • DOI full text
    • PubMed
  • Spormann DO, et al. (1992) Biogenesis of the yeast vacuole (lysosome). The precursor forms of the soluble hydrolase carboxypeptidase yscS are associated with the vacuolar membrane. J Biol Chem 267(12):8021-9 PMID:1569061
    • SGD Paper
    • PubMed
  • Heinemeyer W, et al. (1991) Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J 10(3):555-62 PMID:2001673
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rupp S, et al. (1991) Biogenesis of the yeast vacuole (lysosome). Active site mutation in the vacuolar aspartate proteinase yscA blocks maturation of vacuolar proteinases. FEBS Lett 293(1-2):62-6 PMID:1959673
    • SGD Paper
    • DOI full text
    • PubMed
  • Schu P and Wolf DH (1991) The proteinase yscA-inhibitor, IA3, gene. Studies of cytoplasmic proteinase inhibitor deficiency on yeast physiology. FEBS Lett 283(1):78-84 PMID:2037077
    • SGD Paper
    • DOI full text
    • PubMed
  • Schu P, et al. (1991) The proteinase yscB inhibitor (PB12) gene of yeast and studies on the function of its protein product. Eur J Biochem 197(1):1-7 PMID:2015812
    • SGD Paper
    • DOI full text
    • PubMed
  • Spormann DO, et al. (1991) Carboxypeptidase yscS: gene structure and function of the vacuolar enzyme. Eur J Biochem 197(2):399-405 PMID:2026161
    • SGD Paper
    • DOI full text
    • PubMed
  • Teichert U, et al. (1989) Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J Biol Chem 264(27):16037-45 PMID:2674123
    • SGD Paper
    • PubMed
  • Hirsch HH, et al. (1988) Aminopeptidase yscII of yeast. Isolation of mutants and their biochemical and genetic analysis. Eur J Biochem 173(3):589-98 PMID:3286257
    • SGD Paper
    • DOI full text
    • PubMed
  • Mechler B, et al. (1988) Biogenesis of the yeast lysosome (vacuole): biosynthesis and maturation of proteinase yscB. EMBO J 7(6):1705-10 PMID:3049073
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • García-Alvarez N, et al. (1987) Proteinase yscD mutants of yeast. Isolation and characterization. Eur J Biochem 163(2):339-46 PMID:3545833
    • SGD Paper
    • DOI full text
    • PubMed
  • Mechler B, et al. (1987) Maturation of vacuolar (lysosomal) enzymes in yeast: proteinase yscA and proteinase yscB are catalysts of the processing and activation event of carboxypeptidase yscY. EMBO J 6(7):2157-63 PMID:3308453
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Suárez Rendueles P and Wolf DH (1987) Identification of the structural gene for dipeptidyl aminopeptidase yscV (DAP2) of Saccharomyces cerevisiae. J Bacteriol 169(9):4041-8 PMID:3305478
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wagner JC and Wolf DH (1987) Hormone (pheromone) processing enzymes in yeast. The carboxy-terminal processing enzyme of the mating pheromone alpha-factor, carboxypeptidase ysc alpha, is absent in alpha-factor maturation-defective kex1 mutant cells. FEBS Lett 221(2):423-6 PMID:3305079
    • SGD Paper
    • DOI full text
    • PubMed
  • Wagner JC, et al. (1987) Some characteristics of hormone (pheromone) processing enzymes in yeast. FEBS Lett 218(1):31-4 PMID:3297783
    • SGD Paper
    • DOI full text
    • PubMed
  • Achstetter T and Wolf DH (1985) Hormone processing and membrane-bound proteinases in yeast. EMBO J 4(1):173-7 PMID:3894003
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Achstetter T, et al. (1985) Proteinase yscD. Purification and characterization of a new yeast peptidase. J Biol Chem 260(8):4585-90 PMID:3886641
    • SGD Paper
    • PubMed
  • Achstetter T, et al. (1984) Proteolysis in eukaryotic cells. Identification of multiple proteolytic enzymes in yeast. J Biol Chem 259(21):13334-43 PMID:6149221
    • SGD Paper
    • PubMed
  • Mechler B, et al. (1982) In vivo biosynthesis of the vacuolar proteinases A and B in the yeast Saccharomyces cerevisiae. J Biol Chem 257(19):11203-6 PMID:6749836
    • SGD Paper
    • PubMed
  • Mechler B and Wolf DH (1981) Analysis of proteinase A function in yeast. Eur J Biochem 121(1):47-52 PMID:6799292
    • SGD Paper
    • DOI full text
    • PubMed
  • Wolf DH and Ehmann C (1981) Carboxypeptidase S- and carboxypeptidase Y-deficient mutants of Saccharomyces cerevisiae. J Bacteriol 147(2):418-26 PMID:7021530
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beck I, et al. (1980) The intracellular proteinases and their inhibitors in yeast. A mutant with altered regulation of proteinase A inhibitor activity. J Biol Chem 255(10):4821-8 PMID:6989820
    • SGD Paper
    • PubMed
  • Wolf DH and Ehmann C (1979) Studies on a proteinase B mutant of yeast. Eur J Biochem 98(2):375-84 PMID:385314
    • SGD Paper
    • DOI full text
    • PubMed
  • Wolf DH and Weiser U (1977) Studies on a carboxypeptidase Y mutant of yeast and evidence for a second carboxypeptidase Activity. Eur J Biochem 73(2):553-6 PMID:403073
    • SGD Paper
    • DOI full text
    • PubMed
  • Wolf DH and Fink GR (1975) Proteinase C (carboxypeptidase Y) mutant of yeast. J Bacteriol 123(3):1150-6 PMID:51020
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top