AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Wang B
  • References

Author: Wang B


References 58 references


No citations for this author.

Download References (.nbib)

  • Wang Y, et al. (2025) Discrimination and characterization of the volatile organic compounds in red and black raspberry wines fermented with different commercial Saccharomyces cerevisiae: An integrated analysis using E-nose, GC-MS, GC-IMS, and multivariate statistical models. Food Chem 478:143678 PMID:40056627
    • SGD Paper
    • DOI full text
    • PubMed
  • Zheng X, et al. (2025) Decoding Specificity of Cyanobacterial MysDs in Mycosporine-like Amino Acid Biosynthesis through Heterologous Expression in Saccharomyces cerevisiae. ACS Omega 10(13):13664-13673 PMID:40224414
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Berg JA, et al. (2023) Metaboverse enables automated discovery and visualization of diverse metabolic regulatory patterns. Nat Cell Biol 25(4):616-625 PMID:37012464
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li L, et al. (2023) Quorum sensing: cell-to-cell communication in Saccharomyces cerevisiae. Front Microbiol 14:1250151 PMID:38075875
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu W, et al. (2023) Adjustment of impact phenolic compounds, antioxidant activity and aroma profile in Cabernet Sauvignon wine by mixed fermentation of Pichia kudriavzevii and Saccharomyces cerevisiae. Food Chem X 18:100685 PMID:37131849
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang B, et al. (2023) Glucose Starvation Stimulates the Promoting Strength of a Novel Evolved Suc2 Promoter. J Agric Food Chem 71(37):13838-13847 PMID:37669532
    • SGD Paper
    • DOI full text
    • PubMed
  • Forster DT, et al. (2022) BIONIC: biological network integration using convolutions. Nat Methods 19(10):1250-1261 PMID:36192463
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li Q, et al. (2022) Delayed luminescence as a tool for detecting oxidative stress in Saccharomyces cerevisiae. Gen Physiol Biophys 41(1):79-86 PMID:35253653
    • SGD Paper
    • DOI full text
    • PubMed
  • Tian M, et al. (2022) Relationship between delayed luminescence emission and mitochondrial status in Saccharomyces cerevisiae. Sci Rep 12(1):394 PMID:35013471
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang B, et al. (2022) Isolation and characterisation of dominant acetic acid bacteria and yeast isolated from Kombucha samples at point of sale in New Zealand. Curr Res Food Sci 5:835-844 PMID:35600538
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen Y, et al. (2021) Genome-Scale Screening and Combinatorial Optimization of Gene Overexpression Targets to Improve Cadmium Tolerance in Saccharomyces cerevisiae. Front Microbiol 12:662512 PMID:34335494
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yao L, et al. (2021) Dynamic Structure of Yeast Septin by Fast Fluctuation-Enhanced Structured Illumination Microscopy. Microorganisms 9(11) PMID:34835381
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang B, et al. (2020) The DEAD-box RNA helicase SHI2 functions in repression of salt-inducible genes and regulation of cold-inducible gene splicing. J Exp Bot 71(4):1598-1613 PMID:31745559
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang B, et al. (2020) A chromosome-scale assembly of the smallest Dothideomycete genome reveals a unique genome compaction mechanism in filamentous fungi. BMC Genomics 21(1):321 PMID:32326892
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang F, et al. (2020) Inulin catabolism in Saccharomyces cerevisiae is affected by some key glycosylation sequons of invertase Suc2. Biotechnol Lett 42(3):471-479 PMID:31912347
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang J, et al. (2020) The deubiquitinating enzyme MoUbp8 is required for infection-related development, pathogenicity, and carbon catabolite repression in Magnaporthe oryzae. Appl Microbiol Biotechnol 104(11):5081-5094 PMID:32274561
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhao B, et al. (2020) Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Pharmacol Rev 72(2):380-413 PMID:32107274
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen X, et al. (2019) Heterologous expression and characterization of Penicillium citrinum nuclease P1 in Aspergillus niger and its application in the production of nucleotides. Protein Expr Purif 156:36-43 PMID:30557611
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang G, et al. (2019) Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy. Biomolecules 9(9) PMID:31527517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang H, et al. (2019) Ectopic Expression of Poplar ABC Transporter PtoABCG36 Confers Cd Tolerance in Arabidopsis thaliana. Int J Mol Sci 20(13) PMID:31277496
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jiang H, et al. (2018) Putative Interaction Proteins of the Ubiquitin Ligase Hrd1 in Magnaporthe oryzae. Evol Bioinform Online 14:1176934318810990 PMID:30559593
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yang ZK, et al. (2018) Recombinational DSBs-intersected genes converge on specific disease- and adaptability-related pathways. Bioinformatics 34(20):3421-3426 PMID:29726921
    • SGD Paper
    • DOI full text
    • PubMed
  • Zang J, et al. (2018) Phospholipid molecular species composition of Chinese traditional low-salt fermented fish inoculated with different starter cultures. Food Res Int 111:87-96 PMID:30007741
    • SGD Paper
    • DOI full text
    • PubMed
  • Sun Q, et al. (2017) Molecular architecture of the 90S small subunit pre-ribosome. Elife 6 PMID:28244370
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang B and Ye K (2017) Nop9 binds the central pseudoknot region of 18S rRNA. Nucleic Acids Res 45(6):3559-3567 PMID:28053123
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meng DD, et al. (2016) Characterization of a thermostable endo-1,3(4)-β-glucanase from Caldicellulosiruptor sp. strain F32 and its application for yeast lysis. Appl Microbiol Biotechnol 100(11):4923-34 PMID:26837217
    • SGD Paper
    • DOI full text
    • PubMed
  • Baker E, et al. (2015) The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts. Mol Biol Evol 32(11):2818-31 PMID:26269586
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li J, et al. (2015) Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae. Appl Environ Microbiol 81(12):4062-70 PMID:25841015
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang B, et al. (2015) Five checkpoints maintaining the fidelity of transcription by RNA polymerases in structural and energetic details. Nucleic Acids Res 43(2):1133-46 PMID:25550432
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kumar C, et al. (2014) ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates. DNA Repair (Amst) 18:18-30 PMID:24746922
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang B, et al. (2014) [Production of β-carotene by metabolically engineered Saccharomyces cerevisiae]. Sheng Wu Gong Cheng Xue Bao 30(8):1204-16 PMID:25423750
    • SGD Paper
    • PubMed
  • Wang B, et al. (2014) Biomimetic construction of cellular shell by adjusting the interfacial energy. Biotechnol Bioeng 111(2):386-95 PMID:23904332
    • SGD Paper
    • DOI full text
    • PubMed
  • Dai Z, et al. (2013) Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20:146-56 PMID:24126082
    • SGD Paper
    • DOI full text
    • PubMed
  • Deng Y, et al. (2013) ppiPre: predicting protein-protein interactions by combining heterogeneous features. BMC Syst Biol 7 Suppl 2(Suppl 2):S8 PMID:24565177
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liu Y, et al. (2013) Binding mechanism and synergetic effects of xanthone derivatives as noncompetitive α-glucosidase inhibitors: a theoretical and experimental study. J Phys Chem B 117(43):13464-71 PMID:24083955
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang B, et al. (2013) Energetic and structural details of the trigger-loop closing transition in RNA polymerase II. Biophys J 105(3):767-75 PMID:23931324
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • You ZH, et al. (2013) Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinformatics 14 Suppl 8(Suppl 8):S10 PMID:23815620
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhao P, et al. (2013) MAIGO2 is involved in abscisic acid-mediated response to abiotic stresses and Golgi-to-ER retrograde transport. Physiol Plant 148(2):246-60 PMID:23025793
    • SGD Paper
    • DOI full text
    • PubMed
  • Zhu L, et al. (2013) t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLoS One 8(4):e58368 PMID:23560036
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang B and Gao L (2012) Seed selection strategy in global network alignment without destroying the entire structures of functional modules. Proteome Sci 10 Suppl 1(Suppl 1):S16 PMID:22759574
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wu J, et al. (2011) Small molecule inhibitors of histone acetyltransferase Tip60. Bioorg Chem 39(1):53-8 PMID:21186043
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zhu T, et al. (2010) Community structure and role analysis in biological networks. J Biomol Struct Dyn 27(5):573-79 PMID:20085375
    • SGD Paper
    • DOI full text
    • PubMed
  • Niu H, et al. (2009) Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol Cell 36(3):393-404 PMID:19917248
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang B, et al. (2008) Complex ligand-induced conformational changes in tRNA(Asp) revealed by single-nucleotide resolution SHAPE chemistry. Biochemistry 47(11):3454-61 PMID:18290632
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu Y, et al. (2007) Synthesis of xanthone derivatives with extended pi-systems as alpha-glucosidase inhibitors: insight into the probable binding mode. Bioorg Med Chem 15(8):2810-4 PMID:17331734
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang B, et al. (2007) Cloning and characterization of a LASS1-GDF1 transcript in rat cerebral cortex: conservation of a bicistronic structure. DNA Seq 18(2):92-103 PMID:17364820
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu Y, et al. (2006) Synthesis and pharmacological activities of xanthone derivatives as alpha-glucosidase inhibitors. Bioorg Med Chem 14(16):5683-90 PMID:16651002
    • SGD Paper
    • DOI full text
    • PubMed
  • Mach H, et al. (2006) Disassembly and reassembly of yeast-derived recombinant human papillomavirus virus-like particles (HPV VLPs). J Pharm Sci 95(10):2195-206 PMID:16871523
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang B, et al. (2006) [Continuous ethanol fermentation coupled with recycling of yeast flocs]. Sheng Wu Gong Cheng Xue Bao 22(5):816-20 PMID:17037208
    • SGD Paper
    • DOI full text
    • PubMed
  • Fisher RD, et al. (2003) Structure and ubiquitin binding of the ubiquitin-interacting motif. J Biol Chem 278(31):28976-84 PMID:12750381
    • SGD Paper
    • DOI full text
    • PubMed
  • Feng L, et al. (2000) Identification and characterization of Saccharomyces cerevisiae Cdc6 DNA-binding properties. Mol Biol Cell 11(5):1673-85 PMID:10793143
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Feng L, et al. (2000) Loss control of Mcm5 interaction with chromatin in cdc6-1 mutated in CDC-NTP motif. DNA Cell Biol 19(7):447-57 PMID:10945234
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang B, et al. (1999) The essential role of Saccharomyces cerevisiae CDC6 nucleotide-binding site in cell growth, DNA synthesis, and Orc1 association. J Biol Chem 274(12):8291-8 PMID:10075735
    • SGD Paper
    • DOI full text
    • PubMed
  • Feng L, et al. (1998) Saccharomyces cerevisiae Cdc6 stimulates Abf1 DNA binding activity. J Biol Chem 273(3):1298-302 PMID:9430660
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang B, et al. (1998) High-resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Structure 6(5):555-69 PMID:9634694
    • SGD Paper
    • DOI full text
    • PubMed
  • Elsasser S, et al. (1996) Interaction between yeast Cdc6 protein and B-type cyclin/Cdc28 kinases. Mol Biol Cell 7(11):1723-35 PMID:8930895
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sanchez Y, et al. (1996) Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271(5247):357-60 PMID:8553072
    • SGD Paper
    • DOI full text
    • PubMed
  • Jong AY, et al. (1995) Pulsed field gel electrophoresis labeling method to study the pattern of Saccharomyces cerevisiae chromosomal DNA synthesis during the G1/S phase of the cell cycle. Anal Biochem 227(1):32-9 PMID:7668389
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top