AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: van Dijken JP
  • References

Author: van Dijken JP


References 44 references


No citations for this author.

Download References (.nbib)

  • Bellissimi E, et al. (2009) Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 9(3):358-64 PMID:19416101
    • SGD Paper
    • DOI full text
    • PubMed
  • Zelle RM, et al. (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74(9):2766-77 PMID:18344340
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wisselink HW, et al. (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol 73(15):4881-91 PMID:17545317
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Maris AJ, et al. (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179-204 PMID:17846724
    • SGD Paper
    • DOI full text
    • PubMed
  • Geertman JM, et al. (2006) Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res 6(8):1193-203 PMID:17156016
    • SGD Paper
    • DOI full text
    • PubMed
  • Geertman JM, et al. (2006) Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Metab Eng 8(6):532-42 PMID:16891140
    • SGD Paper
    • DOI full text
    • PubMed
  • van Maris AJ, et al. (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90(4):391-418 PMID:17033882
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuyper M, et al. (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5(10):925-34 PMID:15949975
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuyper M, et al. (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4-5):399-409 PMID:15691745
    • SGD Paper
    • DOI full text
    • PubMed
  • Kuyper M, et al. (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4(6):655-64 PMID:15040955
    • SGD Paper
    • DOI full text
    • PubMed
  • van Maris AJ, et al. (2004) Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol 70(1):159-66 PMID:14711638
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Maris AJ, et al. (2004) Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol 70(5):2898-905 PMID:15128549
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kuyper M, et al. (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69-78 PMID:14554198
    • SGD Paper
    • DOI full text
    • PubMed
  • van Maris AJ, et al. (2003) Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69(4):2094-9 PMID:12676688
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Overkamp KM, et al. (2002) Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Yeast 19(10):813-24 PMID:12112236
    • SGD Paper
    • DOI full text
    • PubMed
  • Overkamp KM, et al. (2002) Functional analysis of structural genes for NAD(+)-dependent formate dehydrogenase in Saccharomyces cerevisiae. Yeast 19(6):509-20 PMID:11921099
    • SGD Paper
    • DOI full text
    • PubMed
  • Bakker BM, et al. (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25(1):15-37 PMID:11152939
    • SGD Paper
    • DOI full text
    • PubMed
  • Rodrigues F, et al. (2001) Oxygen requirements of the food spoilage yeast Zygosaccharomyces bailii in synthetic and complex media. Appl Environ Microbiol 67(5):2123-8 PMID:11319090
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Van Hoek P, et al. (2001) Human acylphosphatase cannot replace phosphoglycerate kinase in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 80(1):11-7 PMID:11761363
    • SGD Paper
    • DOI full text
    • PubMed
  • Bakker BM, et al. (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182(17):4730-7 PMID:10940011
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Luttik MA, et al. (2000) The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 182(24):7007-13 PMID:11092862
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Overkamp KM, et al. (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182(10):2823-30 PMID:10781551
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeeman AM, et al. (2000) Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 16(7):611-20 PMID:10806423
    • SGD Paper
    • DOI full text
    • PubMed
  • van Dijken JP, et al. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26(9-10):706-714 PMID:10862876
    • SGD Paper
    • DOI full text
    • PubMed
  • van Hoek P, et al. (2000) Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast. Biotechnol Bioeng 68(5):517-23 PMID:10797237
    • SGD Paper
    • DOI full text
    • PubMed
  • van Hoek P, et al. (2000) Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol 26(9-10):724-736 PMID:10862878
    • SGD Paper
    • DOI full text
    • PubMed
  • Bauer J, et al. (1999) By-product formation during exposure of respiring Saccharomyces cerevisiae cultures to excess glucose is not caused by a limited capacity of pyruvate carboxylase. FEMS Microbiol Lett 179(1):107-13 PMID:10481094
    • SGD Paper
    • DOI full text
    • PubMed
  • Brambilla L, et al. (1999) NADH reoxidation does not control glycolytic flux during exposure of respiring Saccharomyces cerevisiae cultures to glucose excess. FEMS Microbiol Lett 171(2):133-40 PMID:10077837
    • SGD Paper
    • DOI full text
    • PubMed
  • Diderich JA, et al. (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274(22):15350-9 PMID:10336421
    • SGD Paper
    • DOI full text
    • PubMed
  • Flikweert MT, et al. (1999) Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae. FEMS Microbiol Lett 174(1):73-9 PMID:10234824
    • SGD Paper
    • DOI full text
    • PubMed
  • Flikweert MT, et al. (1999) Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66(1):42-50 PMID:10556793
    • SGD Paper
    • DOI full text
    • PubMed
  • ter Linde JJ, et al. (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181(24):7409-13 PMID:10601195
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Luttik MA, et al. (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273(38):24529-34 PMID:9733747
    • SGD Paper
    • DOI full text
    • PubMed
  • Zeeman AM, et al. (1998) Inactivation of the Kluyveromyces lactis KlPDA1 gene leads to loss of pyruvate dehydrogenase activity, impairs growth on glucose and triggers aerobic alcoholic fermentation. Microbiology (Reading) 144 ( Pt 12):3437-3446 PMID:9884236
    • SGD Paper
    • DOI full text
    • PubMed
  • de Jong-Gubbels P, et al. (1998) Overproduction of acetyl-coenzyme A synthetase isoenzymes in respiring Saccharomyces cerevisiae cells does not reduce acetate production after exposure to glucose excess. FEMS Microbiol Lett 165(1):15-20 PMID:9711835
    • SGD Paper
    • DOI full text
    • PubMed
  • de Jong-Gubbels P, et al. (1998) Physiological characterisation of a pyruvate-carboxylase-negative Saccharomyces cerevisiae mutant in batch and chemostat cultures. Antonie Van Leeuwenhoek 74(4):253-63 PMID:10081585
    • SGD Paper
    • DOI full text
    • PubMed
  • ter Schure EG, et al. (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microbiol 64(4):1303-7 PMID:9546164
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • van Hoek P, et al. (1998) Effects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae. Appl Environ Microbiol 64(6):2133-40 PMID:9603825
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • de Jong-Gubbels P, et al. (1997) The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. FEMS Microbiol Lett 153(1):75-81 PMID:9252575
    • SGD Paper
    • DOI full text
    • PubMed
  • van den Berg MA, et al. (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271(46):28953-9 PMID:8910545
    • SGD Paper
    • DOI full text
    • PubMed
  • de Jong-Gubbels P, et al. (1995) Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast 11(5):407-18 PMID:7597844
    • SGD Paper
    • DOI full text
    • PubMed
  • Pronk JT, et al. (1994) Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae. Microbiology (Reading) 140 ( Pt 3):601-10 PMID:8012582
    • SGD Paper
    • DOI full text
    • PubMed
  • Postma E, et al. (1990) Substrate-accelerated death of Saccharomyces cerevisiae CBS 8066 under maltose stress. Yeast 6(2):149-58 PMID:2183522
    • SGD Paper
    • DOI full text
    • PubMed
  • van Urk H, et al. (1989) Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. Biochim Biophys Acta 992(1):78-86 PMID:2665820
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top