AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Valášek LS
  • References

Author: Valášek LS


References 21 references


No citations for this author.

Download References (.nbib)

  • Čapková Pavlíková Z, et al. (2025) Ribosomal A-site interactions with near-cognate tRNAs drive stop codon readthrough. Nat Struct Mol Biol 32(4):662-674 PMID:39806023
    • SGD Paper
    • DOI full text
    • PubMed
  • Jendruchová K, et al. (2024) Differential effects of 40S ribosome recycling factors on reinitiation at regulatory uORFs in GCN4 mRNA are not dictated by their roles in bulk 40S recycling. Commun Biol 7(1):1083 PMID:39232119
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vojtová J, et al. (2024) A fully automated morphological analysis of yeast mitochondria from wide-field fluorescence images. Sci Rep 14(1):30144 PMID:39627480
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kachale A, et al. (2023) Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment. Nature 613(7945):751-758 PMID:36631608
    • SGD Paper
    • DOI full text
    • PubMed
  • Wagner S, et al. (2022) Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control. Nat Protoc 17(10):2139-2187 PMID:35869369
    • SGD Paper
    • DOI full text
    • PubMed
  • Mohammad MP, et al. (2021) eIF4G is retained on ribosomes elongating and terminating on short upstream ORFs to control reinitiation in yeast. Nucleic Acids Res 49(15):8743-8756 PMID:34352092
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wagner S, et al. (2020) Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes. Mol Cell 79(4):546-560.e7 PMID:32589964
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beznosková P, et al. (2019) Yeast applied readthrough inducing system (YARIS): an invivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res 47(12):6339-6350 PMID:31069379
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Poncová K, et al. (2019) uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3. Nucleic Acids Res 47(21):11326-11343 PMID:31642471
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeman J, et al. (2019) Binding of eIF3 in complex with eIF5 and eIF1 to the 40S ribosomal subunit is accompanied by dramatic structural changes. Nucleic Acids Res 47(15):8282-8300 PMID:31291455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hronová V and Valášek LS (2017) An emergency brake for protein synthesis. Elife 6 PMID:28440747
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Aitken CE, et al. (2016) Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex. Elife 5 PMID:27782884
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beznosková P, et al. (2016) Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22(3):456-66 PMID:26759455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gunišová S, et al. (2016) In-depth analysis of cis-determinants that either promote or inhibit reinitiation on GCN4 mRNA after translation of its four short uORFs. RNA 22(4):542-58 PMID:26822200
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beznosková P, et al. (2015) Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res 43(10):5099-111 PMID:25925566
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gunišová S and Valášek LS (2014) Fail-safe mechanism of GCN4 translational control--uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Res 42(9):5880-93 PMID:24623812
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Khoshnevis S, et al. (2014) Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. Nucleic Acids Res 42(6):4123-39 PMID:24423867
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wagner S, et al. (2014) Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells. Mol Cell Biol 34(16):3041-52 PMID:24912683
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beznosková P, et al. (2013) Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet 9(11):e1003962 PMID:24278036
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kouba T, et al. (2012) Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS One 7(7):e40464 PMID:22792338
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Munzarová V, et al. (2011) Translation reinitiation relies on the interaction between eIF3a/TIF32 and progressively folded cis-acting mRNA elements preceding short uORFs. PLoS Genet 7(7):e1002137 PMID:21750682
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top