Sea K, et al. (2015) Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase. J Biol Chem 290(4):2405-18 PMID:25433341
Li AM, et al. (2014) Differential localization and potency of manganese porphyrin superoxide dismutase-mimicking compounds in Saccharomyces cerevisiae. Redox Biol 3:1-6 PMID:25462059
Sea KW, et al. (2013) Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone. J Biol Inorg Chem 18(8):985-92 PMID:24061560
Sheng Y, et al. (2012) Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase. Proc Natl Acad Sci U S A 109(36):14314-9 PMID:22908245
Sheng Y, et al. (2011) Comparison of two yeast MnSODs: mitochondrial Saccharomyces cerevisiae versus cytosolic Candida albicans. J Am Chem Soc 133(51):20878-89 PMID:22077216
Barnese K, et al. (2010) Investigation of the highly active manganese superoxide dismutase from Saccharomyces cerevisiae. J Am Chem Soc 132(36):12525-7 PMID:20726524
McNaughton RL, et al. (2010) Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci U S A 107(35):15335-9 PMID:20702768
Seetharaman SV, et al. (2010) Disrupted zinc-binding sites in structures of pathogenic SOD1 variants D124V and H80R. Biochemistry 49(27):5714-25 PMID:20515040
Sanchez RJ, et al. (2005) Exogenous manganous ion at millimolar levels rescues all known dioxygen-sensitive phenotypes of yeast lacking CuZnSOD. J Biol Inorg Chem 10(8):913-23 PMID:16283393
Wallace MA, et al. (2005) Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds. Chem Res Toxicol 18(8):1279-86 PMID:16097801
Carroll MC, et al. (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci U S A 101(16):5964-9 PMID:15069187
Chiang KT, et al. (2000) Effects of nitric oxide on the copper-responsive transcription factor Ace1 in Saccharomyces cerevisiae: cytotoxic and cytoprotective actions of nitric oxide. Arch Biochem Biophys 377(2):296-303 PMID:10845707
De Freitas JM, et al. (2000) Yeast lacking Cu-Zn superoxide dismutase show altered iron homeostasis. Role of oxidative stress in iron metabolism. J Biol Chem 275(16):11645-9 PMID:10766782
Goto JJ, et al. (2000) Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 275(2):1007-14 PMID:10625639
Hall LT, et al. (2000) X-ray crystallographic and analytical ultracentrifugation analyses of truncated and full-length yeast copper chaperones for SOD (LYS7): a dimer-dimer model of LYS7-SOD association and copper delivery. Biochemistry 39(13):3611-23 PMID:10736160
Lyons TJ, et al. (2000) The metal binding properties of the zinc site of yeast copper-zinc superoxide dismutase: implications for amyotrophic lateral sclerosis. J Biol Inorg Chem 5(2):189-203 PMID:10819464
Shinyashiki M, et al. (2000) The interaction of nitric oxide (NO) with the yeast transcription factor Ace1: A model system for NO-protein thiol interactions with implications to metal metabolism. Proc Natl Acad Sci U S A 97(6):2491-6 PMID:10694579
Srinivasan C, et al. (2000) Yeast lacking superoxide dismutase(s) show elevated levels of "free iron" as measured by whole cell electron paramagnetic resonance. J Biol Chem 275(38):29187-92 PMID:10882731
Hart PJ, et al. (1998) Subunit asymmetry in the three-dimensional structure of a human CuZnSOD mutant found in familial amyotrophic lateral sclerosis. Protein Sci 7(3):545-55 PMID:9541385
Longo VD, et al. (1997) Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol 137(7):1581-8 PMID:9199172
Longo VD, et al. (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271(21):12275-80 PMID:8647826
Rabizadeh S, et al. (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc Natl Acad Sci U S A 92(7):3024-8 PMID:7708768
Nishida CR, et al. (1994) Characterization of three yeast copper-zinc superoxide dismutase mutants analogous to those coded for in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 91(21):9906-10 PMID:7937915
Tamai KT, et al. (1993) Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Natl Acad Sci U S A 90(17):8013-7 PMID:8367458
Gralla EB, et al. (1991) ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci U S A 88(19):8558-62 PMID:1924315
Bermingham-McDonogh O, et al. (1988) The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci U S A 85(13):4789-93 PMID:3290902