AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Tuite MF
  • References

Author: Tuite MF


References 126 references


No citations for this author.

Download References (.nbib)

  • Koloteva-Levine N, et al. (2021) Amyloid particles facilitate surface-catalyzed cross-seeding by acting as promiscuous nanoparticles. Proc Natl Acad Sci U S A 118(36) PMID:34462352
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beal DM, et al. (2019) Quantitative Analyses of the Yeast Oxidative Protein Folding Pathway In Vitro and In Vivo. Antioxid Redox Signal 31(4):261-274 PMID:30880408
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nan H, et al. (2019) A viral expression factor behaves as a prion. Nat Commun 10(1):359 PMID:30664652
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF (2019) Yeast models of neurodegenerative diseases. Prog Mol Biol Transl Sci 168:351-379 PMID:31699326
    • SGD Paper
    • DOI full text
    • PubMed
  • Adam I, et al. (2017) Human TorsinA can function in the yeast cytosol as a molecular chaperone. Biochem J 474(20):3439-3454 PMID:28871039
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marchante R, et al. (2017) The physical dimensions of amyloid aggregates control their infective potential as prion particles. Elife 6 PMID:28880146
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ness F, et al. (2017) Over-expression of the molecular chaperone Hsp104 in Saccharomyces cerevisiae results in the malpartition of [PSI+ ] propagons. Mol Microbiol 104(1):125-143 PMID:28073182
    • SGD Paper
    • DOI full text
    • PubMed
  • Sideri T, et al. (2017) The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe. Microb Cell 4(1):16-28 PMID:28191457
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Speldewinde SH, et al. (2017) Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation. PLoS Genet 13(4):e1006708 PMID:28369054
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • von der Haar T, et al. (2017) The control of translational accuracy is a determinant of healthy ageing in yeast. Open Biol 7(1) PMID:28100667
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bastow EL, et al. (2016) New links between SOD1 and metabolic dysfunction from a yeast model of amyotrophic lateral sclerosis. J Cell Sci 129(21):4118-4129 PMID:27656112
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF (2016) Remembering the Past: A New Form of Protein-Based Inheritance. Cell 167(2):302-303 PMID:27716500
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF (2016) An acid tale of prion formation. Elife 5 PMID:27897124
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Doronina VA, et al. (2015) Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion. Mol Microbiol 96(1):163-74 PMID:25601439
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF (2015) Yeast prions: Paramutation at the protein level? Semin Cell Dev Biol 44:51-61 PMID:26386407
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF, et al. (2015) [PSI(+)] turns 50. Prion 9(5):318-32 PMID:26645632
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Staniforth GL and Tuite MF (2014) Monoculture breeds poor social skills. Cell 158(5):975-977 PMID:25171400
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF, et al. (2014) Dynamic prions revealed by magic. Chem Biol 21(2):172-3 PMID:24560165
    • SGD Paper
    • DOI full text
    • PubMed
  • Bauer JW, et al. (2013) Specialized yeast ribosomes: a customized tool for selective mRNA translation. PLoS One 8(7):e67609 PMID:23861776
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marchante R, et al. (2013) Structural definition is important for the propagation of the yeast [PSI+] prion. Mol Cell 50(5):675-85 PMID:23746351
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF (2013) The natural history of yeast prions. Adv Appl Microbiol 84:85-137 PMID:23763759
    • SGD Paper
    • DOI full text
    • PubMed
  • Jossé L, et al. (2012) Probing the role of structural features of mouse PrP in yeast by expression as Sup35-PrP fusions. Prion 6(3):201-10 PMID:22449853
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Staniforth GL and Tuite MF (2012) Fungal prions. Prog Mol Biol Transl Sci 107:417-56 PMID:22482457
    • SGD Paper
    • DOI full text
    • PubMed
  • Afanasieva EG, et al. (2011) Molecular basis for transmission barrier and interference between closely related prion proteins in yeast. J Biol Chem 286(18):15773-80 PMID:21454674
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bastow EL, et al. (2011) Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis. Biochem Soc Trans 39(5):1482-7 PMID:21936838
    • SGD Paper
    • DOI full text
    • PubMed
  • Sideri TC, et al. (2011) Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J Biol Chem 286(45):38924-31 PMID:21832086
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF, et al. (2011) Fungal prions: structure, function and propagation. Top Curr Chem 305:257-98 PMID:21717344
    • SGD Paper
    • DOI full text
    • PubMed
  • Jossé L, et al. (2010) Transient expression of human TorsinA enhances secretion of two functionally distinct proteins in cultured Chinese hamster ovary (CHO) cells. Biotechnol Bioeng 105(3):556-66 PMID:19845036
    • SGD Paper
    • DOI full text
    • PubMed
  • Merritt GH, et al. (2010) Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast. Nucleic Acids Res 38(16):5479-92 PMID:20444877
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Moosavi B, et al. (2010) Hsp70/Hsp90 co-chaperones are required for efficient Hsp104-mediated elimination of the yeast [PSI(+)] prion but not for prion propagation. Yeast 27(3):167-79 PMID:20014008
    • SGD Paper
    • DOI full text
    • PubMed
  • Sideri TC, et al. (2010) Ribosome-associated peroxiredoxins suppress oxidative stress-induced de novo formation of the [PSI+] prion in yeast. Proc Natl Acad Sci U S A 107(14):6394-9 PMID:20308573
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Byrne LJ, et al. (2009) The number and transmission of [PSI] prion seeds (Propagons) in the yeast Saccharomyces cerevisiae. PLoS One 4(3):e4670 PMID:19262693
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF and Cox BS (2009) Prions remodel gene expression in yeast. Nat Cell Biol 11(3):241-3 PMID:19255570
    • SGD Paper
    • DOI full text
    • PubMed
  • Studte P, et al. (2008) tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Mol Microbiol 69(5):1266-77 PMID:18657261
    • SGD Paper
    • DOI full text
    • PubMed
  • Byrne LJ, et al. (2007) Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride. Proc Natl Acad Sci U S A 104(28):11688-93 PMID:17606924
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cole DJ, et al. (2007) Approximations for expected generation number. Biometrics 63(4):1023-30 PMID:17425634
    • SGD Paper
    • DOI full text
    • PubMed
  • Cox BS, et al. (2007) Prion stability. Prion 1(3):170-8 PMID:19164897
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF and Cox BS (2007) The genetic control of the formation and propagation of the [PSI+] prion of yeast. Prion 1(2):101-9 PMID:19164924
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • von der Haar T and Tuite MF (2007) Regulated translational bypass of stop codons in yeast. Trends Microbiol 15(2):78-86 PMID:17187982
    • SGD Paper
    • DOI full text
    • PubMed
  • von der Haar T, et al. (2007) Development of a novel yeast cell-based system for studying the aggregation of Alzheimer's disease-associated Abeta peptides in vivo. Neurodegener Dis 4(2-3):136-47 PMID:17596708
    • SGD Paper
    • DOI full text
    • PubMed
  • Ridout MS, et al. (2006) New approximations to the Malthusian parameter. Biometrics 62(4):1216-23 PMID:17156297
    • SGD Paper
    • DOI full text
    • PubMed
  • Shkundina IS, et al. (2006) The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants. Genetics 172(2):827-35 PMID:16272413
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF and Cox BS (2006) The [PSI+] prion of yeast: a problem of inheritance. Methods 39(1):9-22 PMID:16757178
    • SGD Paper
    • DOI full text
    • PubMed
  • Zenthon JF, et al. (2006) The [PSI+] prion of Saccharomyces cerevisiae can be propagated by an Hsp104 orthologue from Candida albicans. Eukaryot Cell 5(2):217-25 PMID:16467463
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jones GW and Tuite MF (2005) Chaperoning prions: the cellular machinery for propagating an infectious protein? Bioessays 27(8):823-32 PMID:16015602
    • SGD Paper
    • DOI full text
    • PubMed
  • O'Callaghan KJ, et al. (2005) Extraction and denaturing gel electrophoretic methodology for the analysis of yeast proteins. Methods Mol Biol 308:357-73 PMID:16082048
    • SGD Paper
    • DOI full text
    • PubMed
  • Cole DJ, et al. (2004) Estimating the number of prions in yeast cells. Math Med Biol 21(4):369-95 PMID:15567890
    • SGD Paper
    • DOI full text
    • PubMed
  • Osherovich LZ, et al. (2004) Dissection and design of yeast prions. PLoS Biol 2(4):E86 PMID:15045026
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF (2004) Cell biology: the strain of being a prion. Nature 428(6980):265-7 PMID:15029177
    • SGD Paper
    • DOI full text
    • PubMed
  • Massey SE, et al. (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13(4):544-57 PMID:12670996
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Resende CG, et al. (2003) Prion protein gene polymorphisms in Saccharomyces cerevisiae. Mol Microbiol 49(4):1005-17 PMID:12890024
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF and Cox BS (2003) Propagation of yeast prions. Nat Rev Mol Cell Biol 4(11):878-90 PMID:14625537
    • SGD Paper
    • DOI full text
    • PubMed
  • Ness F, et al. (2002) Guanidine hydrochloride inhibits the generation of prion "seeds" but not prion protein aggregation in yeast. Mol Cell Biol 22(15):5593-605 PMID:12101251
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Resende C, et al. (2002) The Candida albicans Sup35p protein (CaSup35p): function, prion-like behaviour and an associated polyglutamine length polymorphism. Microbiology (Reading) 148(Pt 4):1049-1060 PMID:11932450
    • SGD Paper
    • DOI full text
    • PubMed
  • Ferreira PC, et al. (2001) The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol 40(6):1357-69 PMID:11442834
    • SGD Paper
    • DOI full text
    • PubMed
  • O'Sullivan JM, et al. (2001) The Candida albicans gene encoding the cytoplasmic leucyl-tRNA synthetase: implications for the evolution of CUG codon reassignment. Gene 275(1):133-40 PMID:11574161
    • SGD Paper
    • DOI full text
    • PubMed
  • O'Sullivan JM, et al. (2001) Seryl-tRNA synthetase is not responsible for the evolution of CUG codon reassignment in Candida albicans. Yeast 18(4):313-22 PMID:11223940
    • SGD Paper
    • DOI full text
    • PubMed
  • Parham SN, et al. (2001) Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J 20(9):2111-9 PMID:11331577
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eaglestone SS, et al. (2000) Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI(+)] of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97(1):240-4 PMID:10618402
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Song H, et al. (2000) The crystal structure of human eukaryotic release factor eRF1--mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100(3):311-21 PMID:10676813
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF (2000) Cell biology. Sowing the protein seeds of prion propagation. Science 289(5479):556-7 PMID:10939965
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF (2000) Yeast prions and their prion-forming domain. Cell 100(3):289-92 PMID:10676809
    • SGD Paper
    • DOI full text
    • PubMed
  • Eaglestone SS, et al. (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18(7):1974-81 PMID:10202160
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Eurwilaichitr L, et al. (1999) The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol 32(3):485-96 PMID:10320572
    • SGD Paper
    • DOI full text
    • PubMed
  • Mugnier P and Tuite MF (1999) Translation termination and its regulation in eukaryotes: recent insights provided by studies in yeast. Biochemistry (Mosc) 64(12):1360-6 PMID:10648959
    • SGD Paper
    • PubMed
  • Kochneva-Pervukhova NV, et al. (1998) Mechanism of inhibition of Psi+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J 17(19):5805-10 PMID:9755180
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mottagui-Tabar S, et al. (1998) The influence of 5' codon context on translation termination in Saccharomyces cerevisiae. Eur J Biochem 257(1):249-54 PMID:9799126
    • SGD Paper
    • DOI full text
    • PubMed
  • Stansfield I, et al. (1998) Missense translation errors in Saccharomyces cerevisiae. J Mol Biol 282(1):13-24 PMID:9733638
    • SGD Paper
    • DOI full text
    • PubMed
  • Stansfield I, et al. (1997) A conditional-lethal translation termination defect in a sup45 mutant of the yeast Saccharomyces cerevisiae. Eur J Biochem 245(3):557-63 PMID:9182990
    • SGD Paper
    • DOI full text
    • PubMed
  • Urbero B, et al. (1997) Expression of the release factor eRF1 (Sup45p) gene of higher eukaryotes in yeast and mammalian tissues. Biochimie 79(1):27-36 PMID:9195043
    • SGD Paper
    • DOI full text
    • PubMed
  • Barbet NC, et al. (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7(1):25-42 PMID:8741837
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stansfield I, et al. (1996) Depletion in the levels of the release factor eRF1 causes a reduction in the efficiency of translation termination in yeast. Mol Microbiol 20(6):1135-43 PMID:8809766
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF (1996) RNA processing. Death by decapitation for mRNA. Nature 382(6592):577-9 PMID:8757122
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF and Lindquist SL (1996) Maintenance and inheritance of yeast prions. Trends Genet 12(11):467-71 PMID:8973157
    • SGD Paper
    • DOI full text
    • PubMed
  • Belfield GP, et al. (1995) Translation elongation factor-3 (EF-3): an evolving eukaryotic ribosomal protein? J Mol Evol 41(3):376-87 PMID:7563124
    • SGD Paper
    • DOI full text
    • PubMed
  • Boucherié H, et al. (1995) Differential synthesis of glyceraldehyde-3-phosphate dehydrogenase polypeptides in stressed yeast cells. FEMS Microbiol Lett 125(2-3):127-33 PMID:7875559
    • SGD Paper
    • DOI full text
    • PubMed
  • Dunn A, et al. (1995) Protein disulphide isomerase (PDI) is required for the secretion of a native disulphide-bonded protein from Saccharomyces cerevisiae. Biochem Soc Trans 23(1):78S PMID:7758797
    • SGD Paper
    • DOI full text
    • PubMed
  • Rahman DR, et al. (1995) The Saccharomyces cerevisiae small heat shock protein Hsp26 inhibits actin polymerisation. Biochem Soc Trans 23(1):77S PMID:7758796
    • SGD Paper
    • DOI full text
    • PubMed
  • Ross-Smith N, et al. (1995) Translational elongation factor 3 (EF-3): a study of its structural and functional divergence in fungi. Biochem Soc Trans 23(1):132S PMID:7758696
    • SGD Paper
    • DOI full text
    • PubMed
  • Stansfield I, et al. (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14(17):4365-73 PMID:7556078
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stansfield I, et al. (1995) A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr Genet 27(5):417-26 PMID:7586027
    • SGD Paper
    • DOI full text
    • PubMed
  • Webster PA, et al. (1995) Properties and cellular functions of related yeast ER proteins protein disulphide-isomerase and Eug1p. Biochem Soc Trans 23(1):66S PMID:7758783
    • SGD Paper
    • DOI full text
    • PubMed
  • Faulkner JD, et al. (1994) High-level expression of the phenylalanine ammonia lyase-encoding gene from Rhodosporidium toruloides in Saccharomyces cerevisiae and Escherichia coli using a bifunctional expression system. Gene 143(1):13-20 PMID:8200528
    • SGD Paper
    • DOI full text
    • PubMed
  • Grant CM and Tuite MF (1994) Mistranslation of human phosphoglycerate kinase in yeast in the presence of paromomycin. Curr Genet 26(2):95-9 PMID:8001177
    • SGD Paper
    • DOI full text
    • PubMed
  • Sagliocco FA, et al. (1994) Rapid mRNA degradation in yeast can proceed independently of translational elongation. J Biol Chem 269(28):18630-7 PMID:8034611
    • SGD Paper
    • PubMed
  • Stansfield I and Tuite MF (1994) Polypeptide chain termination in Saccharomyces cerevisiae. Curr Genet 25(5):385-95 PMID:8082183
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF (1994) Genetics. Psi no more for yeast prions. Nature 370(6488):327-8 PMID:8047132
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF and Freedman RB (1994) Improving secretion of recombinant proteins from yeast and mammalian cells: rational or empirical design? Trends Biotechnol 12(11):432-4 PMID:7765539
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF and Stansfield I (1994) Translation. Knowing when to stop. Nature 372(6507):614-5 PMID:7990949
    • SGD Paper
    • DOI full text
    • PubMed
  • Belfield GP and Tuite MF (1993) Translation elongation factor 3: a fungus-specific translation factor? Mol Microbiol 9(3):411-8 PMID:8412690
    • SGD Paper
    • DOI full text
    • PubMed
  • Belfield GP, et al. (1993) EF-3: a novel fungal elongation factor with homology to E. coli ribosomal protein S5. Biochem Soc Trans 21(4):331S PMID:8131917
    • SGD Paper
    • DOI full text
    • PubMed
  • Stansfield I, et al. (1993) Errors in stop codon recognition in a temperature sensitive mutation of yeast. Biochem Soc Trans 21(4):329S PMID:8131915
    • SGD Paper
    • DOI full text
    • PubMed
  • Bentley NJ, et al. (1992) The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast 8(2):95-106 PMID:1561840
    • SGD Paper
    • DOI full text
    • PubMed
  • Colthurst DR, et al. (1992) Elongation factor 3 (EF-3) from Candida albicans shows both structural and functional similarity to EF-3 from Saccharomyces cerevisiae. Mol Microbiol 6(8):1025-33 PMID:1584022
    • SGD Paper
    • DOI full text
    • PubMed
  • Gerstel B, et al. (1992) The effects of 5'-capping, 3'-polyadenylation and leader composition upon the translation and stability of mRNA in a cell-free extract derived from the yeast Saccharomyces cerevisiae. Mol Microbiol 6(16):2339-48 PMID:1406273
    • SGD Paper
    • DOI full text
    • PubMed
  • Stansfield I, et al. (1992) Ribosomal association of the yeast SAL4 (SUP45) gene product: implications for its role in translation fidelity and termination. Mol Microbiol 6(23):3469-78 PMID:1474892
    • SGD Paper
    • DOI full text
    • PubMed
  • Akhmaloka, et al. (1991) The use of allosuppressor alleles of the SAL4 gene in the study of translational fidelity in Saccharomyces cerevisiae. Biochem Soc Trans 19(3):281S PMID:1783125
    • SGD Paper
    • DOI full text
    • PubMed
  • Colthurst DR, et al. (1991) Candida albicans and three other Candida species contain an elongation factor structurally and functionally analogous to elongation factor 3. FEMS Microbiol Lett 64(1):45-9 PMID:1855649
    • SGD Paper
    • DOI full text
    • PubMed
  • Colthurst DR, et al. (1991) Analysis of a novel elongation factor: EF-3. Biochem Soc Trans 19(3):279S PMID:1783123
    • SGD Paper
    • DOI full text
    • PubMed
  • Farquhar R, et al. (1991) Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae. Gene 108(1):81-9 PMID:1761235
    • SGD Paper
    • DOI full text
    • PubMed
  • Firoozan M, et al. (1991) Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast 7(2):173-83 PMID:1905859
    • SGD Paper
    • DOI full text
    • PubMed
  • Green SR, et al. (1991) Synthesis of human initiation factor-2 alpha in Saccharomyces cerevisiae. Gene 108(2):253-8 PMID:1748310
    • SGD Paper
    • DOI full text
    • PubMed
  • Hartley AD, et al. (1991) Role of the 5' mRNA leader in heat shock gene expression in yeast. Biochem Soc Trans 19(3):280S PMID:1783124
    • SGD Paper
    • DOI full text
    • PubMed
  • Jackson HC, et al. (1991) No detection of characteristic fungal protein elongation factor EF-3 in Pneumocystis carinii. J Infect Dis 163(3):675-7 PMID:1995744
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF, et al. (1990) The structure and function of small heat shock proteins: analysis of the Saccharomyces cerevisiae Hsp26 protein. Antonie Van Leeuwenhoek 58(3):147-54 PMID:2256673
    • SGD Paper
    • DOI full text
    • PubMed
  • Bossier P, et al. (1989) Structure and expression of a yeast gene encoding the small heat-shock protein Hsp26. Gene 78(2):323-30 PMID:2673926
    • SGD Paper
    • DOI full text
    • PubMed
  • Grant CM, et al. (1989) Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae. Mol Microbiol 3(2):215-20 PMID:2548059
    • SGD Paper
    • DOI full text
    • PubMed
  • Song JM, et al. (1989) Elongation factor EF-1 alpha gene dosage alters translational fidelity in Saccharomyces cerevisiae. Mol Cell Biol 9(10):4571-5 PMID:2685557
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cox BS, et al. (1988) The psi factor of yeast: a problem in inheritance. Yeast 4(3):159-78 PMID:3059716
    • SGD Paper
    • DOI full text
    • PubMed
  • Crouzet M, et al. (1988) The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiae. Curr Genet 14(6):537-43 PMID:3072098
    • SGD Paper
    • DOI full text
    • PubMed
  • Crouzet M and Tuite MF (1987) Genetic control of translational fidelity in yeast: molecular cloning and analysis of the allosuppressor gene SAL3. Mol Gen Genet 210(3):581-3 PMID:3323850
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF, et al. (1987) A ribosome-associated inhibitor of in vitro nonsense suppression in [psi-] strains of yeast. FEBS Lett 225(1-2):205-8 PMID:3319694
    • SGD Paper
    • DOI full text
    • PubMed
  • Bowen BA, et al. (1984) Expression of Ty-lacZ fusions in Saccharomyces cerevisiae. Nucleic Acids Res 12(3):1627-40 PMID:6322112
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF and McLaughlin CS (1984) The effects of paromomycin on the fidelity of translation in a yeast cell-free system. Biochim Biophys Acta 783(2):166-70 PMID:6388640
    • SGD Paper
    • DOI full text
    • PubMed
  • Dobson MJ, et al. (1983) Expression in Saccharomyces cerevisiae of human interferon-alpha directed by the TRP1 5' region. Nucleic Acids Res 11(8):2287-302 PMID:6304646
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Perkins RE, et al. (1983) The complete amino acid sequence of yeast phosphoglycerate kinase. Biochem J 211(1):199-218 PMID:6347186
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF and McLaughlin CS (1983) Polyamines enhance the efficiency of tRNA-mediated readthrough of amber and UGA termination codons in a yeast cell-free system. Curr Genet 7(6):421-6 PMID:24173447
    • SGD Paper
    • DOI full text
    • PubMed
  • Tuite MF, et al. (1983) In vitro nonsense suppression in [psi+] and [psi-] cell-free lysates of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 80(10):2824-8 PMID:6344070
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dobson MJ, et al. (1982) Conservation of high efficiency promoter sequences in Saccharomyces cerevisiae. Nucleic Acids Res 10(8):2625-37 PMID:6281737
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF and McLaughlin CS (1982) Endogenous read-through of a UGA termination codon in a Saccharomyces cerevisiae cell-free system: evidence for involvement of both a mitochondrial and a nuclear tRNA. Mol Cell Biol 2(5):490-7 PMID:7050674
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF, et al. (1982) Relationship of the [psi] factor with other plasmids of Saccharomyces cerevisiae. Plasmid 8(2):103-11 PMID:6757991
    • SGD Paper
    • DOI full text
    • PubMed
  • Watson HC, et al. (1982) Sequence and structure of yeast phosphoglycerate kinase. EMBO J 1(12):1635-40 PMID:6765200
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF and Cox BS (1981) RAD6+ gene of Saccharomyces cerevisiae codes for two mutationally separable deoxyribonucleic acid repair functions. Mol Cell Biol 1(2):153-7 PMID:6765597
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF, et al. (1981) Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98(4):691-711 PMID:7037537
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cox BS, et al. (1980) Reversion from suppression to nonsuppression in SUQ5 [psi+] strains of yeast: the classificaion of mutations. Genetics 95(3):589-609 PMID:7002720
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tuite MF and Cox BS (1980) Ultraviolet mutagenesis studies of [psi], a cytoplasmic determinant of Saccharomyces cerevisiae. Genetics 95(3):611-30 PMID:7002721
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top