Luo SC, et al. (2021) Identification of fidelity-governing factors in human recombinases DMC1 and RAD51 from cryo-EM structures. Nat Commun 12(1):115 PMID:33446654
Hoch NC, et al. (2017) Quantitative Analysis of Yeast Checkpoint Protein Kinase Activity by Combined Mass Spectrometry Enzyme Assays. Methods Enzymol 586:143-164 PMID:28137560
Chen ES, et al. (2014) Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo. Mol Cell Proteomics 13(2):551-65 PMID:24302356
Shen ZJ, et al. (2014) PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nat Commun 5:5312 PMID:25387524
Liang CY, et al. (2011) The histone H3K36 demethylase Rph1/KDM4 regulates the expression of the photoreactivation gene PHR1. Nucleic Acids Res 39(10):4151-65 PMID:21296759
Wang CY, et al. (2011) The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123. PLoS One 6(7):e22209 PMID:21829450
Yang L, et al. (2010) Unambiguous determination of isobaric histone modifications by reversed-phase retention time and high-mass accuracy. Anal Biochem 396(1):13-22 PMID:19699711
Lee H, et al. (2008) Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell 30(6):767-78 PMID:18570878
Mahajan A, et al. (2005) FHA domain-ligand interactions: importance of integrating chemical and biological approaches. J Am Chem Soc 127(42):14572-3 PMID:16231900
Yongkiettrakul S, et al. (2004) The ligand specificity of yeast Rad53 FHA domains at the +3 position is determined by nonconserved residues. Biochemistry 43(13):3862-9 PMID:15049693
Pike BL, et al. (2003) Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation. J Biol Chem 278(33):30421-4 PMID:12805372
Arndt JW, et al. (2001) Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes. Biochemistry 40(18):5368-75 PMID:11330999
Byeon IJ, et al. (2001) Solution structure of the yeast Rad53 FHA2 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-pYXL and FHA1-pTXXD complexes. J Mol Biol 314(3):577-88 PMID:11846568
Yuan C, et al. (2001) Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. J Mol Biol 314(3):563-75 PMID:11846567
Liao H, et al. (2000) Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. J Mol Biol 304(5):941-51 PMID:11124038
Wang P, et al. (2000) II. Structure and specificity of the interaction between the FHA2 domain of Rad53 and phosphotyrosyl peptides. J Mol Biol 302(4):927-40 PMID:10993733
Yuan C, et al. (2000) Tumor suppressor INK4: refinement of p16INK4A structure and determination of p15INK4B structure by comparative modeling and NMR data. Protein Sci 9(6):1120-8 PMID:10892805
Li J, et al. (1999) Tumor suppressor INK4: determination of the solution structure of p18INK4C and demonstration of the functional significance of loops in p18INK4C and p16INK4A. Biochemistry 38(10):2930-40 PMID:10074345
Liao H, et al. (1999) Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. J Mol Biol 294(4):1041-9 PMID:10588905
Yan H and Tsai MD (1999) Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. Adv Enzymol Relat Areas Mol Biol 73:103-34, x PMID:10218107
Byeon IJ, et al. (1998) Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol Cell 1(3):421-31 PMID:9660926