AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Tsai MD
  • References

Author: Tsai MD


References 28 references


No citations for this author.

Download References (.nbib)

  • Luo SC, et al. (2021) Identification of fidelity-governing factors in human recombinases DMC1 and RAD51 from cryo-EM structures. Nat Commun 12(1):115 PMID:33446654
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen ES, et al. (2017) Phospho-Priming Confers Functionally Relevant Specificities for Rad53 Kinase Autophosphorylation. Biochemistry 56(38):5112-5124 PMID:28858528
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoch NC, et al. (2017) Quantitative Analysis of Yeast Checkpoint Protein Kinase Activity by Combined Mass Spectrometry Enzyme Assays. Methods Enzymol 586:143-164 PMID:28137560
    • SGD Paper
    • DOI full text
    • PubMed
  • Chen ES, et al. (2014) Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo. Mol Cell Proteomics 13(2):551-65 PMID:24302356
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shen ZJ, et al. (2014) PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nat Commun 5:5312 PMID:25387524
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoch NC, et al. (2013) Molecular basis of the essential s phase function of the rad53 checkpoint kinase. Mol Cell Biol 33(16):3202-13 PMID:23754745
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Liang CY, et al. (2011) The histone H3K36 demethylase Rph1/KDM4 regulates the expression of the photoreactivation gene PHR1. Nucleic Acids Res 39(10):4151-65 PMID:21296759
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang CY, et al. (2011) The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123. PLoS One 6(7):e22209 PMID:21829450
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Matsumura Y, et al. (2010) alpha-Helical burst on the folding pathway of FHA domains from Rad53 and Ki67. Biochimie 92(8):1031-9 PMID:20466033
    • SGD Paper
    • DOI full text
    • PubMed
  • Yang L, et al. (2010) Unambiguous determination of isobaric histone modifications by reversed-phase retention time and high-mass accuracy. Anal Biochem 396(1):13-22 PMID:19699711
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee H, et al. (2008) Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell 30(6):767-78 PMID:18570878
    • SGD Paper
    • DOI full text
    • PubMed
  • Mahajan A, et al. (2008) Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 1(51):re12 PMID:19109241
    • SGD Paper
    • DOI full text
    • PubMed
  • Tu S, et al. (2007) Identification of histone demethylases in Saccharomyces cerevisiae. J Biol Chem 282(19):14262-71 PMID:17369256
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mahajan A, et al. (2005) FHA domain-ligand interactions: importance of integrating chemical and biological approaches. J Am Chem Soc 127(42):14572-3 PMID:16231900
    • SGD Paper
    • DOI full text
    • PubMed
  • Pike BL, et al. (2004) Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae. Mol Cell Biol 24(7):2779-88 PMID:15024067
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yongkiettrakul S, et al. (2004) The ligand specificity of yeast Rad53 FHA domains at the +3 position is determined by nonconserved residues. Biochemistry 43(13):3862-9 PMID:15049693
    • SGD Paper
    • DOI full text
    • PubMed
  • Pike BL, et al. (2003) Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation. J Biol Chem 278(33):30421-4 PMID:12805372
    • SGD Paper
    • DOI full text
    • PubMed
  • Arndt JW, et al. (2001) Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes. Biochemistry 40(18):5368-75 PMID:11330999
    • SGD Paper
    • DOI full text
    • PubMed
  • Byeon IJ, et al. (2001) Solution structure of the yeast Rad53 FHA2 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-pYXL and FHA1-pTXXD complexes. J Mol Biol 314(3):577-88 PMID:11846568
    • SGD Paper
    • DOI full text
    • PubMed
  • Yuan C, et al. (2001) Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. J Mol Biol 314(3):563-75 PMID:11846567
    • SGD Paper
    • DOI full text
    • PubMed
  • Liao H, et al. (2000) Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. J Mol Biol 304(5):941-51 PMID:11124038
    • SGD Paper
    • DOI full text
    • PubMed
  • Wang P, et al. (2000) II. Structure and specificity of the interaction between the FHA2 domain of Rad53 and phosphotyrosyl peptides. J Mol Biol 302(4):927-40 PMID:10993733
    • SGD Paper
    • DOI full text
    • PubMed
  • Yuan C, et al. (2000) Tumor suppressor INK4: refinement of p16INK4A structure and determination of p15INK4B structure by comparative modeling and NMR data. Protein Sci 9(6):1120-8 PMID:10892805
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li J, et al. (1999) Tumor suppressor INK4: determination of the solution structure of p18INK4C and demonstration of the functional significance of loops in p18INK4C and p16INK4A. Biochemistry 38(10):2930-40 PMID:10074345
    • SGD Paper
    • DOI full text
    • PubMed
  • Liao H, et al. (1999) Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. J Mol Biol 294(4):1041-9 PMID:10588905
    • SGD Paper
    • DOI full text
    • PubMed
  • Yan H and Tsai MD (1999) Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. Adv Enzymol Relat Areas Mol Biol 73:103-34, x PMID:10218107
    • SGD Paper
    • DOI full text
    • PubMed
  • Yuan C, et al. (1999) Tumor suppressor INK4: comparisons of conformational properties between p16(INK4A) and p18(INK4C). J Mol Biol 294(1):201-11 PMID:10556039
    • SGD Paper
    • DOI full text
    • PubMed
  • Byeon IJ, et al. (1998) Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol Cell 1(3):421-31 PMID:9660926
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top