AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Tisi R
  • References

Author: Tisi R


References 33 references


No citations for this author.

Download References (.nbib)

  • Colombo CV, et al. (2024) Functional and molecular insights into the role of Sae2 C-terminus in the activation of MRX endonuclease. Nucleic Acids Res 52(22):13849-13864 PMID:39558159
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Pizzul P, et al. (2024) Rif2 interaction with Rad50 counteracts Tel1 functions in checkpoint signalling and DNA tethering by releasing Tel1 from MRX binding. Nucleic Acids Res 52(5):2355-2371 PMID:38180815
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee GM, et al. (2023) The Ycx1 protein encoded by the yeast YDL206W gene plays a role in calcium and calcineurin signaling. J Biol Chem 299(5):104647 PMID:36965615
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rinaldi C, et al. (2023) The Ku complex promotes DNA end-bridging and this function is antagonized by Tel1/ATM kinase. Nucleic Acids Res 51(4):1783-1802 PMID:36762474
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Spolaor S, et al. (2022) Modeling Calcium Signaling in S. cerevisiae Highlights the Role and Regulation of the Calmodulin-Calcineurin Pathway in Response to Hypotonic Shock. Front Mol Biosci 9:856030 PMID:35664674
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marsella A, et al. (2021) Sae2 and Rif2 regulate MRX endonuclease activity at DNA double-strand breaks in opposite manners. Cell Rep 34(13):108906 PMID:33789097
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Milanesi R, et al. (2021) AMPK Phosphorylation Is Controlled by Glucose Transport Rate in a PKA-Independent Manner. Int J Mol Sci 22(17) PMID:34502388
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bonetti D, et al. (2020) DNA binding modes influence Rap1 activity in the regulation of telomere length and MRX functions at DNA ends. Nucleic Acids Res 48(5):2424-2441 PMID:31879780
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cassani C, et al. (2019) The ATP-bound conformation of the Mre11-Rad50 complex is essential for Tel1/ATM activation. Nucleic Acids Res 47(7):3550-3567 PMID:30698745
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Marsella A, et al. (2019) Structure-function relationships of the Mre11 protein in the control of DNA end bridging and processing. Curr Genet 65(1):11-16 PMID:29922906
    • SGD Paper
    • DOI full text
    • PubMed
  • Cassani C, et al. (2018) Structurally distinct Mre11 domains mediate MRX functions in resection, end-tethering and DNA damage resistance. Nucleic Acids Res 46(6):2990-3008 PMID:29420790
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gobbini E, et al. (2018) The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J 37(16) PMID:29925516
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Niedzwiecka K, et al. (2018) Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast. Biochim Biophys Acta Mol Cell Res 1865(1):117-131 PMID:28986220
    • SGD Paper
    • DOI full text
    • PubMed
  • Rigamonti M, et al. (2015) Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane. Cell Calcium 57(2):57-68 PMID:25573187
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2015) Monitoring yeast intracellular Ca2+ levels using an in vivo bioluminescence assay. Cold Spring Harb Protoc 2015(2):210-3 PMID:25646494
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2015) Total cellular Ca2+ measurements in yeast using flame photometry. Cold Spring Harb Protoc 2015(2):214-6 PMID:25646495
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2015) Measurement of calcium uptake in yeast using 45Ca. Cold Spring Harb Protoc 2015(2):217-8 PMID:25646496
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2014) Yeast as a model for Ras signalling. Methods Mol Biol 1120:359-90 PMID:24470037
    • SGD Paper
    • DOI full text
    • PubMed
  • Belotti F, et al. (2012) Localization of Ras signaling complex in budding yeast. Biochim Biophys Acta 1823(7):1208-16 PMID:22575457
    • SGD Paper
    • DOI full text
    • PubMed
  • Bouillet LE, et al. (2012) The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Cell Calcium 51(1):72-81 PMID:22153127
    • SGD Paper
    • DOI full text
    • PubMed
  • Belotti F, et al. (2011) PKA-dependent regulation of Cdc25 RasGEF localization in budding yeast. FEBS Lett 585(24):3914-20 PMID:22036786
    • SGD Paper
    • DOI full text
    • PubMed
  • Groppi S, et al. (2011) Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium 49(6):376-86 PMID:21511333
    • SGD Paper
    • DOI full text
    • PubMed
  • Pereira MB, et al. (2008) Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 8(4):622-30 PMID:18399987
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2008) The budding yeast RasGEF Cdc25 reveals an unexpected nuclear localization. Biochim Biophys Acta 1783(12):2363-74 PMID:18930081
    • SGD Paper
    • DOI full text
    • PubMed
  • Paiardi C, et al. (2007) The large N-terminal domain of Cdc25 protein of the yeast Saccharomyces cerevisiae is required for glucose-induced Ras2 activation. FEMS Yeast Res 7(8):1270-5 PMID:17727662
    • SGD Paper
    • DOI full text
    • PubMed
  • Belotti F, et al. (2006) The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation. Microbiology (Reading) 152(Pt 4):1231-1242 PMID:16549685
    • SGD Paper
    • DOI full text
    • PubMed
  • Trópia MJ, et al. (2006) Calcium signaling and sugar-induced activation of plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Biochem Biophys Res Commun 343(4):1234-43 PMID:16581020
    • SGD Paper
    • DOI full text
    • PubMed
  • Colombo S, et al. (2004) Design and characterization of a new class of inhibitors of ras activation. Ann N Y Acad Sci 1030:52-61 PMID:15659780
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2004) Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. Curr Genet 45(2):83-9 PMID:14618376
    • SGD Paper
    • DOI full text
    • PubMed
  • Tisi R, et al. (2002) Phospholipase C is required for glucose-induced calcium influx in budding yeast. FEBS Lett 520(1-3):133-8 PMID:12044885
    • SGD Paper
    • DOI full text
    • PubMed
  • Bergsma JC, et al. (2001) PtdIns(4,5)P(2) and phospholipase C-independent Ins(1,4,5)P(3) signals induced by a nitrogen source in nitrogen-starved yeast cells. Biochem J 359(Pt 3):517-23 PMID:11672425
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tisi R, et al. (2001) 3-Nitrocoumarin is an efficient inhibitor of budding yeast phospholipase-C. Cell Biochem Funct 19(4):229-35 PMID:11746203
    • SGD Paper
    • DOI full text
    • PubMed
  • Coccetti P, et al. (1998) The PLC1 encoded phospholipase C in the yeast Saccharomyces cerevisiae is essential for glucose-induced phosphatidylinositol turnover and activation of plasma membrane H+-ATPase. Biochim Biophys Acta 1405(1-3):147-54 PMID:9784626
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top