AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Surtees JA
  • References

Author: Surtees JA


References 23 references


No citations for this author.

Download References (.nbib)

  • Casazza KM, et al. (2025) Msh2-Msh3 DNA-binding is not sufficient to promote trinucleotide repeat expansions in Saccharomyces cerevisiae. Genetics 229(3) PMID:39790027
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Medina-Rivera M, et al. (2023) Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo. Nucleic Acids Res 51(22):12185-12206 PMID:37930834
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lamb NA, et al. (2022) Complex mutation profiles in mismatch repair and ribonucleotide reductase mutants reveal novel repair substrate specificity of MutS homolog (MSH) complexes. Genetics 221(4) PMID:35686905
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lamb NA, et al. (2021) A selection-based next generation sequencing approach to develop robust, genotype-specific mutation profiles in Saccharomyces cerevisiae. G3 (Bethesda) 11(6) PMID:33784385
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Williams GM, et al. (2020) Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae. Methods Mol Biol 2056:25-68 PMID:31586340
    • SGD Paper
    • DOI full text
    • PubMed
  • Subramaniam R, et al. (2019) Extracting and Measuring dNTP Pools in Saccharomyces cerevisiae. Methods Mol Biol 1999:103-127 PMID:31127572
    • SGD Paper
    • DOI full text
    • PubMed
  • Eichmiller R, et al. (2018) Coordination of Rad1-Rad10 interactions with Msh2-Msh3, Saw1 and RPA is essential for functional 3' non-homologous tail removal. Nucleic Acids Res 46(10):5075-5096 PMID:29660012
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Seol JH, et al. (2018) Distinct roles of XPF-ERCC1 and Rad1-Rad10-Saw1 in replication-coupled and uncoupled inter-strand crosslink repair. Nat Commun 9(1):2025 PMID:29795289
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Williams GM and Surtees JA (2018) Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae. Methods Mol Biol 1672:439-470 PMID:29043641
    • SGD Paper
    • DOI full text
    • PubMed
  • Al-Sweel N, et al. (2017) mlh3 mutations in baker's yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide. PLoS Genet 13(8):e1006974 PMID:28827832
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Manhart CM, et al. (2017) The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans. PLoS Biol 15(4):e2001164 PMID:28453523
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rashev M, et al. (2017) Large-scale production of recombinant Saw1 in Escherichia coli. Protein Expr Purif 133:75-80 PMID:28263853
    • SGD Paper
    • DOI full text
    • PubMed
  • Brown MW, et al. (2016) Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions. Nat Commun 7:10607 PMID:26837705
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Williams GM and Surtees JA (2015) MSH3 Promotes Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo. Genetics 200(3):737-54 PMID:25969461
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kumar C, et al. (2014) ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates. DNA Repair (Amst) 18:18-30 PMID:24746922
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kumar C, et al. (2013) Distinct requirements within the Msh3 nucleotide binding pocket for mismatch and double-strand break repair. J Mol Biol 425(11):1881-1898 PMID:23458407
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li F, et al. (2013) Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast. EMBO J 32(3):461-72 PMID:23299942
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kantartzis A, et al. (2012) Msh2-Msh3 interferes with Okazaki fragment processing to promote trinucleotide repeat expansions. Cell Rep 2(2):216-22 PMID:22938864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kumar C, et al. (2011) Multiple factors insulate Msh2-Msh6 mismatch repair activity from defects in Msh2 domain I. J Mol Biol 411(4):765-80 PMID:21726567
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gorman J, et al. (2007) Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol Cell 28(3):359-70 PMID:17996701
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee SD, et al. (2007) Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition. J Mol Biol 366(1):53-66 PMID:17157869
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Surtees JA and Alani E (2006) Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J Mol Biol 360(3):523-36 PMID:16781730
    • SGD Paper
    • DOI full text
    • PubMed
  • Jiang J, et al. (2005) Detection of high-affinity and sliding clamp modes for MSH2-MSH6 by single-molecule unzipping force analysis. Mol Cell 20(5):771-81 PMID:16337600
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top