AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Stevens TH
  • References

Author: Stevens TH


References 97 references


No citations for this author.

Download References (.nbib)

  • Guida MC, et al. (2018) ATP6AP2 functions as a V-ATPase assembly factor in the endoplasmic reticulum. Mol Biol Cell 29(18):2156-2164 PMID:29995586
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tooze SA, et al. (2017) Fundamental mechanisms deliver the Nobel Prize to Ohsumi. Traffic 18(2):93-95 PMID:28097732
    • SGD Paper
    • DOI full text
    • PubMed
  • Jansen EJ, et al. (2016) ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun 7:11600 PMID:27231034
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Coonrod EM, et al. (2013) Homotypic vacuole fusion in yeast requires organelle acidification and not the V-ATPase membrane domain. Dev Cell 27(4):462-8 PMID:24286827
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Finnigan GC, et al. (2012) Sorting of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase): identification of a necessary and sufficient Golgi/endosomal retention signal in Stv1p. J Biol Chem 287(23):19487-500 PMID:22496448
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Finnigan GC, et al. (2012) Evolution of increased complexity in a molecular machine. Nature 481(7381):360-4 PMID:22230956
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Finnigan GC, et al. (2011) The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in Saccharomyces cerevisiae. Mol Biol Cell 22(17):3176-91 PMID:21737673
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Finnigan GC, et al. (2011) A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187(3):771-83 PMID:21196517
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Coonrod EM and Stevens TH (2010) The yeast vps class E mutants: the beginning of the molecular genetic analysis of multivesicular body biogenesis. Mol Biol Cell 21(23):4057-60 PMID:21115849
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Flannery AR and Stevens TH (2008) Functional characterization of the N-terminal domain of subunit H (Vma13p) of the yeast vacuolar ATPase. J Biol Chem 283(43):29099-108 PMID:18708638
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Neubert C, et al. (2008) Arabidopsis has two functional orthologs of the yeast V-ATPase assembly factor Vma21p. Traffic 9(10):1618-28 PMID:18694437
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ryan M, et al. (2008) Voa1p functions in V-ATPase assembly in the yeast endoplasmic reticulum. Mol Biol Cell 19(12):5131-42 PMID:18799613
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Schluter C, et al. (2008) Global analysis of yeast endosomal transport identifies the vps55/68 sorting complex. Mol Biol Cell 19(4):1282-94 PMID:18216282
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Compton MA, et al. (2006) Vma9p (subunit e) is an integral membrane V0 subunit of the yeast V-ATPase. J Biol Chem 281(22):15312-9 PMID:16569636
    • SGD Paper
    • DOI full text
    • PubMed
  • Davis-Kaplan SR, et al. (2006) PKR1 encodes an assembly factor for the yeast V-type ATPase. J Biol Chem 281(42):32025-35 PMID:16926153
    • SGD Paper
    • DOI full text
    • PubMed
  • Lottridge JM, et al. (2006) Vta1p and Vps46p regulate the membrane association and ATPase activity of Vps4p at the yeast multivesicular body. Proc Natl Acad Sci U S A 103(16):6202-7 PMID:16601096
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
  • Bowers K and Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744(3):438-54 PMID:15913810
    • SGD Paper
    • DOI full text
    • PubMed
  • Bowers K, et al. (2004) Protein-protein interactions of ESCRT complexes in the yeast Saccharomyces cerevisiae. Traffic 5(3):194-210 PMID:15086794
    • SGD Paper
    • DOI full text
    • PubMed
  • Bowman EJ, et al. (2004) The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem 279(32):33131-8 PMID:15180988
    • SGD Paper
    • DOI full text
    • PubMed
  • Flannery AR, et al. (2004) Topological characterization of the c, c', and c" subunits of the vacuolar ATPase from the yeast Saccharomyces cerevisiae. J Biol Chem 279(38):39856-62 PMID:15252052
    • SGD Paper
    • DOI full text
    • PubMed
  • Malkus P, et al. (2004) Role of Vma21p in assembly and transport of the yeast vacuolar ATPase. Mol Biol Cell 15(11):5075-91 PMID:15356264
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Conibear E, et al. (2003) Vps51p mediates the association of the GARP (Vps52/53/54) complex with the late Golgi t-SNARE Tlg1p. Mol Biol Cell 14(4):1610-23 PMID:12686613
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Graham LA, et al. (2003) Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr 35(4):301-12 PMID:14635776
    • SGD Paper
    • DOI full text
    • PubMed
  • Kweon Y, et al. (2003) Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell 14(5):1868-81 PMID:12802061
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kawasaki-Nishi S, et al. (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276(50):47411-20 PMID:11592965
    • SGD Paper
    • DOI full text
    • PubMed
  • Sagermann M, et al. (2001) Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98(13):7134-9 PMID:11416198
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bowers K, et al. (2000) The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11(12):4277-94 PMID:11102523
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Conibear E and Stevens TH (2000) Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell 11(1):305-23 PMID:10637310
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gerrard SR, et al. (2000) Pep12p is a multifunctional yeast syntaxin that controls entry of biosynthetic, endocytic and retrograde traffic into the prevacuolar compartment. Traffic 1(3):259-69 PMID:11208109
    • SGD Paper
    • DOI full text
    • PubMed
  • Gerrard SR, et al. (2000) The yeast endosomal t-SNARE, Pep12p, functions in the absence of its transmembrane domain. Traffic 1(1):45-55 PMID:11208059
    • SGD Paper
    • DOI full text
    • PubMed
  • Gerrard SR, et al. (2000) VPS21 controls entry of endocytosed and biosynthetic proteins into the yeast prevacuolar compartment. Mol Biol Cell 11(2):613-26 PMID:10679018
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Graham LA, et al. (2000) Composition and assembly of the yeast vacuolar H(+)-ATPase complex. J Exp Biol 203(Pt 1):61-70 PMID:10600674
    • SGD Paper
    • DOI full text
    • PubMed
  • Powell B, et al. (2000) Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J Biol Chem 275(31):23654-60 PMID:10825180
    • SGD Paper
    • DOI full text
    • PubMed
  • Fischer von Mollard G and Stevens TH (1999) The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell 10(6):1719-32 PMID:10359592
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Graham LA and Stevens TH (1999) Assembly of the yeast vacuolar proton-translocating ATPase. J Bioenerg Biomembr 31(1):39-47 PMID:10340847
    • SGD Paper
    • DOI full text
    • PubMed
  • Tishgarten T, et al. (1999) Structures of yeast vesicle trafficking proteins. Protein Sci 8(11):2465-73 PMID:10595551
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ungermann C, et al. (1999) Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. J Cell Biol 145(7):1435-42 PMID:10385523
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zheng H, et al. (1999) The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell 10(7):2251-64 PMID:10397763
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bryant NJ and Stevens TH (1998) Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 62(1):230-47 PMID:9529893
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bryant NJ, et al. (1998) Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: a VPS45-dependent intracellular route and a VPS45-independent, endocytic route. Eur J Cell Biol 76(1):43-52 PMID:9650782
    • SGD Paper
    • DOI full text
    • PubMed
  • Bryant NJ, et al. (1998) Retrograde traffic out of the yeast vacuole to the TGN occurs via the prevacuolar/endosomal compartment. J Cell Biol 142(3):651-63 PMID:9700156
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Conibear E and Stevens TH (1998) Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim Biophys Acta 1404(1-2):211-30 PMID:9714809
    • SGD Paper
    • DOI full text
    • PubMed
  • Fischer von Mollard G and Stevens TH (1998) A human homolog can functionally replace the yeast vesicle-associated SNARE Vti1p in two vesicle transport pathways. J Biol Chem 273(5):2624-30 PMID:9446565
    • SGD Paper
    • DOI full text
    • PubMed
  • Graham LA, et al. (1998) Assembly of the yeast vacuolar H+-ATPase occurs in the endoplasmic reticulum and requires a Vma12p/Vma22p assembly complex. J Cell Biol 142(1):39-49 PMID:9660861
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Voos W and Stevens TH (1998) Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p. J Cell Biol 140(3):577-90 PMID:9456318
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bryant NJ and Stevens TH (1997) Two separate signals act independently to localize a yeast late Golgi membrane protein through a combination of retrieval and retention. J Cell Biol 136(2):287-97 PMID:9015300
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hirata R, et al. (1997) VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J Biol Chem 272(8):4795-803 PMID:9030535
    • SGD Paper
    • DOI full text
    • PubMed
  • Jackson DD and Stevens TH (1997) VMA12 encodes a yeast endoplasmic reticulum protein required for vacuolar H+-ATPase assembly. J Biol Chem 272(41):25928-34 PMID:9325326
    • SGD Paper
    • DOI full text
    • PubMed
  • Piper RC, et al. (1997) The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. J Cell Biol 138(3):531-45 PMID:9245784
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stevens TH and Forgac M (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol 13:779-808 PMID:9442887
    • SGD Paper
    • DOI full text
    • PubMed
  • Tellam JT, et al. (1997) Identification of a mammalian Golgi Sec1p-like protein, mVps45. J Biol Chem 272(10):6187-93 PMID:9045632
    • SGD Paper
    • DOI full text
    • PubMed
  • Tomashek JJ, et al. (1997) V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase. J Biol Chem 272(42):26787-93 PMID:9334266
    • SGD Paper
    • DOI full text
    • PubMed
  • von Mollard GF, et al. (1997) The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J Cell Biol 137(7):1511-24 PMID:9199167
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Chen YJ and Stevens TH (1996) The VPS8 gene is required for localization and trafficking of the CPY sorting receptor in Saccharomyces cerevisiae. Eur J Cell Biol 70(4):289-97 PMID:8864656
    • SGD Paper
    • PubMed
  • Cooper AA and Stevens TH (1996) Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 133(3):529-41 PMID:8636229
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nothwehr SF, et al. (1996) The newly identified yeast GRD genes are required for retention of late-Golgi membrane proteins. Mol Cell Biol 16(6):2700-7 PMID:8649377
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Conibear E and Stevens TH (1995) Vacuolar biogenesis in yeast: sorting out the sorting proteins. Cell 83(4):513-6 PMID:7585951
    • SGD Paper
    • DOI full text
    • PubMed
  • Cooper AA and Stevens TH (1995) Protein splicing: self-splicing of genetically mobile elements at the protein level. Trends Biochem Sci 20(9):351-6 PMID:7482702
    • SGD Paper
    • DOI full text
    • PubMed
  • Ekena K and Stevens TH (1995) The Saccharomyces cerevisiae MVP1 gene interacts with VPS1 and is required for vacuolar protein sorting. Mol Cell Biol 15(3):1671-8 PMID:7862158
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Graham LA, et al. (1995) VMA8 encodes a 32-kDa V1 subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase required for function and assembly of the enzyme complex. J Biol Chem 270(25):15037-44 PMID:7797485
    • SGD Paper
    • DOI full text
    • PubMed
  • Hill KJ and Stevens TH (1995) Vma22p is a novel endoplasmic reticulum-associated protein required for assembly of the yeast vacuolar H(+)-ATPase complex. J Biol Chem 270(38):22329-36 PMID:7673216
    • SGD Paper
    • DOI full text
    • PubMed
  • Nothwehr SF, et al. (1995) Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J Cell Biol 129(1):35-46 PMID:7698993
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piper RC, et al. (1995) VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J Cell Biol 131(3):603-17 PMID:7593183
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Graham LA, et al. (1994) VMA7 encodes a novel 14-kDa subunit of the Saccharomyces cerevisiae vacuolar H(+)-ATPase complex. J Biol Chem 269(42):25974-7 PMID:7929308
    • SGD Paper
    • PubMed
  • Hill KJ and Stevens TH (1994) Vma21p is a yeast membrane protein retained in the endoplasmic reticulum by a di-lysine motif and is required for the assembly of the vacuolar H(+)-ATPase complex. Mol Biol Cell 5(9):1039-50 PMID:7841520
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Piper RC, et al. (1994) Yeast Vps45p is a Sec1p-like protein required for the consumption of vacuole-targeted, post-Golgi transport vesicles. Eur J Cell Biol 65(2):305-18 PMID:7720726
    • SGD Paper
    • PubMed
  • Rothblatt et al. (1994) Guidebook to the Secretory Pathway
    • SGD Paper
  • Bauerle C, et al. (1993) The Saccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H(+)-ATPase membrane sector. J Biol Chem 268(17):12749-57 PMID:8509410
    • SGD Paper
    • PubMed
  • Cooper AA and Stevens TH (1993) Protein splicing: excision of intervening sequences at the protein level. Bioessays 15(10):667-74 PMID:8274142
    • SGD Paper
    • DOI full text
    • PubMed
  • Cooper AA, et al. (1993) Protein splicing of the yeast TFP1 intervening protein sequence: a model for self-excision. EMBO J 12(6):2575-83 PMID:8508780
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ekena K, et al. (1993) The VPS1 protein is a dynamin-like GTPase required for sorting proteins to the yeast vacuole. Ciba Found Symp 176:198-211; discussion 211-4 PMID:8299420
    • SGD Paper
    • DOI full text
    • PubMed
  • Hirata R, et al. (1993) VMA12 is essential for assembly of the vacuolar H(+)-ATPase subunits onto the vacuolar membrane in Saccharomyces cerevisiae. J Biol Chem 268(2):961-7 PMID:8419376
    • SGD Paper
    • PubMed
  • Ho MN, et al. (1993) Isolation of vacuolar membrane H(+)-ATPase-deficient yeast mutants; the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H(+)-ATPase. J Biol Chem 268(1):221-7 PMID:8416931
    • SGD Paper
    • PubMed
  • Ho MN, et al. (1993) VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. J Biol Chem 268(24):18286-92 PMID:8349704
    • SGD Paper
    • PubMed
  • Nothwehr SF, et al. (1993) Membrane protein retention in the yeast Golgi apparatus: dipeptidyl aminopeptidase A is retained by a cytoplasmic signal containing aromatic residues. J Cell Biol 121(6):1197-209 PMID:8509444
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kane PM, et al. (1992) Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H(+)-ATPase. J Biol Chem 267(1):447-54 PMID:1530931
    • SGD Paper
    • PubMed
  • Raymond CK, et al. (1992) Biogenesis of the vacuole in Saccharomyces cerevisiae. Int Rev Cytol 139:59-120 PMID:1428679
    • SGD Paper
    • DOI full text
    • PubMed
  • Raymond CK, et al. (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3(12):1389-402 PMID:1493335
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Roberts CJ, et al. (1992) Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment. J Cell Biol 119(1):69-83 PMID:1527174
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ryan C, et al. (1992) Inhibitory effects of HSP70 chaperones on nascent polypeptides. Protein Sci 1(8):980-5 PMID:1304386
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tachibana C and Stevens TH (1992) The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol Cell Biol 12(10):4601-11 PMID:1406650
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Vater CA, et al. (1992) The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in Saccharomyces cerevisiae, is a GTPase with two functionally separable domains. J Cell Biol 119(4):773-86 PMID:1429836
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kane PM, et al. (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250(4981):651-7 PMID:2146742
    • SGD Paper
    • DOI full text
    • PubMed
  • Raymond CK, et al. (1990) Molecular analysis of the yeast VPS3 gene and the role of its product in vacuolar protein sorting and vacuolar segregation during the cell cycle. J Cell Biol 111(3):877-92 PMID:2202738
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rothman JH, et al. (1990) A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell 61(6):1063-74 PMID:2112425
    • SGD Paper
    • DOI full text
    • PubMed
  • Valls LA, et al. (1990) Yeast carboxypeptidase Y vacuolar targeting signal is defined by four propeptide amino acids. J Cell Biol 111(2):361-8 PMID:2199455
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yamashiro CT, et al. (1990) Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol 10(7):3737-49 PMID:2141385
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kane PM, et al. (1989) Biochemical characterization of the yeast vacuolar H(+)-ATPase. J Biol Chem 264(32):19236-44 PMID:2478556
    • SGD Paper
    • PubMed
  • Roberts CJ, et al. (1989) Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole. J Cell Biol 108(4):1363-73 PMID:2647766
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rothman JH, et al. (1989) Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae. EMBO J 8(7):2057-65 PMID:2676511
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rothman JH, et al. (1989) Acidification of the lysosome-like vacuole and the vacuolar H+-ATPase are deficient in two yeast mutants that fail to sort vacuolar proteins. J Cell Biol 109(1):93-100 PMID:2526133
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Blachly-Dyson E and Stevens TH (1987) Yeast carboxypeptidase Y can be translocated and glycosylated without its amino-terminal signal sequence. J Cell Biol 104(5):1183-91 PMID:3032983
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Valls LA, et al. (1987) Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48(5):887-97 PMID:3028649
    • SGD Paper
    • DOI full text
    • PubMed
  • Ammerer G, et al. (1986) PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol Cell Biol 6(7):2490-9 PMID:3023936
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rothman JH and Stevens TH (1986) Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47(6):1041-51 PMID:3536126
    • SGD Paper
    • DOI full text
    • PubMed
  • Stevens TH, et al. (1986) Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y. J Cell Biol 102(5):1551-7 PMID:3517002
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Stevens TH, et al. (1982) The nature of CuA in cytochrome c oxidase. J Biol Chem 257(20):12106-13 PMID:6288707
    • SGD Paper
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top