AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Sicheri F
  • References

Author: Sicheri F


References 44 references


No citations for this author.

Download References (.nbib)

  • Ona Chuquimarca SM, et al. (2024) Structures of KEOPS bound to tRNA reveal functional roles of the kinase Bud32. Nat Commun 15(1):10633 PMID:39639027
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Yin JZ, et al. (2024) The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA. Structure 32(6):795-811.e6 PMID:38531363
    • SGD Paper
    • DOI full text
    • PubMed
  • Beenstock J, et al. (2022) A suite of in vitro and in vivo assays for monitoring the activity of the pseudokinase Bud32. Methods Enzymol 667:729-773 PMID:35525560
    • SGD Paper
    • DOI full text
    • PubMed
  • Beenstock J and Sicheri F (2021) The structural and functional workings of KEOPS. Nucleic Acids Res 49(19):10818-10834 PMID:34614169
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Beenstock J, et al. (2020) A substrate binding model for the KEOPS tRNA modifying complex. Nat Commun 11(1):6233 PMID:33277478
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Csizmok V, et al. (2017) An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase. Nat Commun 8:13943 PMID:28045046
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Manczyk N, et al. (2017) Structural and functional characterization of a ubiquitin variant engineered for tight and specific binding to an alpha-helical ubiquitin interacting motif. Protein Sci 26(5):1060-1069 PMID:28276594
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wan LC, et al. (2017) Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7. Nucleic Acids Res 45(2):805-817 PMID:27903914
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Xiong S, et al. (2017) Regulation of Protein Interactions by Mps One Binder (MOB1) Phosphorylation. Mol Cell Proteomics 16(6):1111-1125 PMID:28373297
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wan LC, et al. (2016) Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t6A biosynthesis. Nucleic Acids Res 44(14):6971-80 PMID:27302132
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Li JJ, et al. (2015) Baculovirus protein PK2 subverts eIF2α kinase function by mimicry of its kinase domain C-lobe. Proc Natl Acad Sci U S A 112(32):E4364-73 PMID:26216977
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Huang H, et al. (2014) E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nat Chem Biol 10(2):156-163 PMID:24316736
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wybenga-Groot LE, et al. (2014) Structural basis of Rad53 kinase activation by dimerization and activation segment exchange. Cell Signal 26(9):1825-36 PMID:24815189
    • SGD Paper
    • DOI full text
    • PubMed
  • Wan LC, et al. (2013) Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system. Nucleic Acids Res 41(12):6332-46 PMID:23620299
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tang X, et al. (2012) Composite low affinity interactions dictate recognition of the cyclin-dependent kinase inhibitor Sic1 by the SCFCdc4 ubiquitin ligase. Proc Natl Acad Sci U S A 109(9):3287-92 PMID:22328159
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dey M, et al. (2011) Requirement for kinase-induced conformational change in eukaryotic initiation factor 2alpha (eIF2alpha) restricts phosphorylation of Ser51. Proc Natl Acad Sci U S A 108(11):4316-21 PMID:21368187
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lee KP and Sicheri F (2011) Principles of IRE1 modulation using chemical tools. Methods Enzymol 490:271-94 PMID:21266256
    • SGD Paper
    • DOI full text
    • PubMed
  • Liu Q, et al. (2011) SCFCdc4 enables mating type switching in yeast by cyclin-dependent kinase-mediated elimination of the Ash1 transcriptional repressor. Mol Cell Biol 31(3):584-98 PMID:21098119
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mittag T, et al. (2010) Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18(4):494-506 PMID:20399186
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Orlicky S, et al. (2010) An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nat Biotechnol 28(7):733-7 PMID:20581844
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wiseman RL, et al. (2010) Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol Cell 38(2):291-304 PMID:20417606
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Youn JY, et al. (2010) Dissecting BAR domain function in the yeast Amphiphysins Rvs161 and Rvs167 during endocytosis. Mol Biol Cell 21(17):3054-69 PMID:20610658
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dev K, et al. (2009) Archaeal aIF2B interacts with eukaryotic translation initiation factors eIF2alpha and eIF2Balpha: Implications for aIF2B function and eIF2B regulation. J Mol Biol 392(3):701-22 PMID:19616556
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meyer-Schaller N, et al. (2009) The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes. Proc Natl Acad Sci U S A 106(30):12365-70 PMID:19617556
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kurz T, et al. (2008) Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. Mol Cell 29(1):23-35 PMID:18206966
    • SGD Paper
    • DOI full text
    • PubMed
  • Lee KP, et al. (2008) Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132(1):89-100 PMID:18191223
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mao DY, et al. (2008) Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. Mol Cell 32(2):259-75 PMID:18951093
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Mittag T, et al. (2008) Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci U S A 105(46):17772-7 PMID:19008353
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tang X, et al. (2007) Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129(6):1165-76 PMID:17574027
    • SGD Paper
    • DOI full text
    • PubMed
  • Weerasekera R, et al. (2007) Interactome and interface protocol (2IP): a novel strategy for high sensitivity topology mapping of protein complexes. Proteomics 7(21):3835-52 PMID:17960736
    • SGD Paper
    • DOI full text
    • PubMed
  • Aviv T, et al. (2006) Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Nat Struct Mol Biol 13(2):168-76 PMID:16429151
    • SGD Paper
    • DOI full text
    • PubMed
  • Aviv T, et al. (2006) The NMR and X-ray structures of the Saccharomyces cerevisiae Vts1 SAM domain define a surface for the recognition of RNA hairpins. J Mol Biol 356(2):274-9 PMID:16375924
    • SGD Paper
    • DOI full text
    • PubMed
  • Mrkobrada S, et al. (2006) Structural and functional analysis of Saccharomyces cerevisiae Mob1. J Mol Biol 362(3):430-40 PMID:16934835
    • SGD Paper
    • DOI full text
    • PubMed
  • Dar AC, et al. (2005) Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell 122(6):887-900 PMID:16179258
    • SGD Paper
    • DOI full text
    • PubMed
  • Dey M, et al. (2005) PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha. Mol Cell Biol 25(8):3063-75 PMID:15798194
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tang X, et al. (2005) Genome-wide surveys for phosphorylation-dependent substrates of SCF ubiquitin ligases. Methods Enzymol 399:433-58 PMID:16338374
    • SGD Paper
    • DOI full text
    • PubMed
  • Aviv T, et al. (2003) The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat Struct Biol 10(8):614-21 PMID:12858164
    • SGD Paper
    • DOI full text
    • PubMed
  • Orlicky S, et al. (2003) Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112(2):243-56 PMID:12553912
    • SGD Paper
    • DOI full text
    • PubMed
  • Zigmond SH, et al. (2003) Formin leaky cap allows elongation in the presence of tight capping proteins. Curr Biol 13(20):1820-3 PMID:14561409
    • SGD Paper
    • DOI full text
    • PubMed
  • Leung GC, et al. (2002) The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nat Struct Biol 9(10):719-24 PMID:12352953
    • SGD Paper
    • DOI full text
    • PubMed
  • Nash P, et al. (2001) Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414(6863):514-21 PMID:11734846
    • SGD Paper
    • DOI full text
    • PubMed
  • Wybenga-Groot LE, et al. (2001) Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106(6):745-57 PMID:11572780
    • SGD Paper
    • DOI full text
    • PubMed
  • Schindler T, et al. (1999) Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol Cell 3(5):639-48 PMID:10360180
    • SGD Paper
    • DOI full text
    • PubMed
  • Sicheri F, et al. (1997) Crystal structure of the Src family tyrosine kinase Hck. Nature 385(6617):602-9 PMID:9024658
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top