AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Segal E
  • References

Author: Segal E


References 44 references


No citations for this author.

Download References (.nbib)

  • Levo M, et al. (2017) Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays. Mol Cell 65(4):604-617.e6 PMID:28212748
    • SGD Paper
    • DOI full text
    • PubMed
  • van Dijk D, et al. (2017) Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Res 27(1):87-94 PMID:27965290
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keren L, et al. (2016) Massively Parallel Interrogation of the Effects of Gene Expression Levels on Fitness. Cell 166(5):1282-1294.e18 PMID:27545349
    • SGD Paper
    • DOI full text
    • PubMed
  • Keren L, et al. (2015) Noise in gene expression is coupled to growth rate. Genome Res 25(12):1893-902 PMID:26355006
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Levo M, et al. (2015) Unraveling determinants of transcription factor binding outside the core binding site. Genome Res 25(7):1018-29 PMID:25762553
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lubliner S, et al. (2015) Core promoter sequence in yeast is a major determinant of expression level. Genome Res 25(7):1008-17 PMID:25969468
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shalem O, et al. (2015) Systematic dissection of the sequence determinants of gene 3' end mediated expression control. PLoS Genet 11(4):e1005147 PMID:25875337
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharon E, et al. (2014) Probing the effect of promoters on noise in gene expression using thousands of designed sequences. Genome Res 24(10):1698-706 PMID:25030889
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeevi D, et al. (2014) Molecular dissection of the genetic mechanisms that underlie expression conservation in orthologous yeast ribosomal promoters. Genome Res 24(12):1991-9 PMID:25294245
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Carey LB, et al. (2013) Promoter sequence determines the relationship between expression level and noise. PLoS Biol 11(4):e1001528 PMID:23565060
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Dvir S, et al. (2013) Deciphering the rules by which 5'-UTR sequences affect protein expression in yeast. Proc Natl Acad Sci U S A 110(30):E2792-801 PMID:23832786
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keren L and Segal E (2013) Fixated on fixation: using ChIP to interrogate the dynamics of chromatin interactions. Genome Biol 14(11):138 PMID:24257511
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Keren L, et al. (2013) Promoters maintain their relative activity levels under different growth conditions. Mol Syst Biol 9:701 PMID:24169404
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Lubliner S, et al. (2013) Sequence features of yeast and human core promoters that are predictive of maximal promoter activity. Nucleic Acids Res 41(11):5569-81 PMID:23599004
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Meyer P, et al. (2013) Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach. Genome Res 23(11):1928-37 PMID:23950146
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shalem O, et al. (2013) Measurements of the impact of 3' end sequences on gene expression reveal wide range and sequence dependent effects. PLoS Comput Biol 9(3):e1002934 PMID:23505350
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Raveh-Sadka T, et al. (2012) Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat Genet 44(7):743-50 PMID:22634752
    • SGD Paper
    • DOI full text
    • PubMed
  • Sharon E, et al. (2012) Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol 30(6):521-30 PMID:22609971
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wan Y, et al. (2012) Genome-wide measurement of RNA folding energies. Mol Cell 48(2):169-81 PMID:22981864
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Zeevi D, et al. (2011) Compensation for differences in gene copy number among yeast ribosomal proteins is encoded within their promoters. Genome Res 21(12):2114-28 PMID:22009988
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaplan N, et al. (2010) Nucleosome sequence preferences influence in vivo nucleosome organization. Nat Struct Mol Biol 17(8):918-20 PMID:20683473
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kenigsberg E, et al. (2010) Widespread compensatory evolution conserves DNA-encoded nucleosome organization in yeast. PLoS Comput Biol 6(12):e1001039 PMID:21203484
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kertesz M, et al. (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467(7311):103-7 PMID:20811459
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Basu A, et al. (2009) Proteome-wide prediction of acetylation substrates. Proc Natl Acad Sci U S A 106(33):13785-90 PMID:19666589
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Field Y, et al. (2009) Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nat Genet 41(4):438-45 PMID:19252487
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaplan N, et al. (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458(7236):362-6 PMID:19092803
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Raveh-Sadka T, et al. (2009) Incorporating nucleosomes into thermodynamic models of transcription regulation. Genome Res 19(8):1480-96 PMID:19451592
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Field Y, et al. (2008) Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4(11):e1000216 PMID:18989395
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shalem O, et al. (2008) Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol Syst Biol 4:223 PMID:18854817
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang JP, et al. (2008) Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae. PLoS Comput Biol 4(9):e1000175 PMID:18787693
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wang H, et al. (2007) InSite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale. Genome Biol 8(9):R192 PMID:17868464
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Segal E, et al. (2006) A genomic code for nucleosome positioning. Nature 442(7104):772-8 PMID:16862119
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
    • Reference supplement
  • Battle A, et al. (2005) Probabilistic discovery of overlapping cellular processes and their regulation. J Comput Biol 12(7):909-27 PMID:16201912
    • SGD Paper
    • DOI full text
    • PubMed
  • Segal E and Sharan R (2005) A discriminative model for identifying spatial cis-regulatory modules. J Comput Biol 12(6):822-34 PMID:16108719
    • SGD Paper
    • DOI full text
    • PubMed
  • Marion RM, et al. (2004) Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci U S A 101(40):14315-22 PMID:15353587
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shapira M, et al. (2004) Disruption of yeast forkhead-associated cell cycle transcription by oxidative stress. Mol Biol Cell 15(12):5659-69 PMID:15371544
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
    • Reference supplement
    • Reference supplement
  • Segal E, et al. (2003) Decomposing gene expression into cellular processes. Pac Symp Biocomput 89-100 PMID:12603020
    • SGD Paper
    • DOI full text
    • PubMed
  • Segal E, et al. (2003) Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19 Suppl 1:i264-71 PMID:12855469
    • SGD Paper
    • DOI full text
    • PubMed
  • Segal E, et al. (2003) Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics 19 Suppl 1:i273-82 PMID:12855470
    • SGD Paper
    • DOI full text
    • PubMed
  • Segal E, et al. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166-76 PMID:12740579
    • SGD Paper
    • DOI full text
    • PubMed
    • Reference supplement
  • Stuart JM, et al. (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249-55 PMID:12934013
    • SGD Paper
    • DOI full text
    • PubMed
  • Segal E, et al. (2002) Cloning and analysis of CoEXG1, a secreted 1,3-beta-glucanase of the yeast biocontrol agent Candida oleophila. Yeast 19(13):1171-82 PMID:12237858
    • SGD Paper
    • DOI full text
    • PubMed
  • Segal E, et al. (2001) Rich probabilistic models for gene expression. Bioinformatics 17 Suppl 1:S243-52 PMID:11473015
    • SGD Paper
    • DOI full text
    • PubMed
  • Altboum Z, et al. (1990) Isolation of the Candida albicans histidinol dehydrogenase (HIS4) gene and characterization of a histidine auxotroph. J Bacteriol 172(7):3898-904 PMID:2163392
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top