AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Sasano Y
  • References

Author: Sasano Y


References 31 references


No citations for this author.

Download References (.nbib)

  • Hotta N, et al. (2024) Effect of yeast chromosome II aneuploidy on malate production in sake brewing. J Biosci Bioeng 137(1):24-30 PMID:37989703
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2024) Draft genome sequence of thermotolerant Saccharomyces cerevisiae AH465, isolated from Mt. Tatsuda, Kumamoto, Japan. Microbiol Resour Announc 13(4):e0112423 PMID:38501777
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Easmin F, et al. (2020) CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae. J Biosci Bioeng 129(2):129-139 PMID:31585858
    • SGD Paper
    • DOI full text
    • PubMed
  • Hassan N, et al. (2020) CRISPR-PCDup: a novel approach for simultaneous segmental chromosomal duplication in Saccharomyces cerevisiae. AMB Express 10(1):27 PMID:32016717
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hassan N, et al. (2020) Systematic approach for assessing whether undeletable chromosomal regions in Saccharomyces cerevisiae are required for cell viability. AMB Express 10(1):73 PMID:32296956
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Easmin F, et al. (2019) gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing. J Biosci Bioeng 128(3):373-378 PMID:31010727
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2018) Genetic analysis of suppressor mutants of a pho84 disruptant in the search for genes involved in intracellular inorganic phosphate sensing in Saccharomyces cerevisiae. Genes Genet Syst 93(5):199-207 PMID:30449767
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y and Harashima S (2017) CRISPR-PCS Protocol for Chromosome Splitting and Splitting Event Detection in Saccharomyces cerevisiae. Bio Protoc 7(10):e2306 PMID:34541068
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sasano Y, et al. (2017) Molecular breeding of Saccharomyces cerevisiae with high RNA content by harnessing essential ribosomal RNA transcription regulator. AMB Express 7(1):32 PMID:28155199
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kaboli S, et al. (2016) Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae. J Biosci Bioeng 121(6):638-644 PMID:26690924
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2016) CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci Rep 6:30278 PMID:27530680
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Natesuntorn W, et al. (2015) Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae. Sci Rep 5:12510 PMID:26224198
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Numamoto M, et al. (2015) Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae. J Biosci Bioeng 120(2):121-7 PMID:25641578
    • SGD Paper
    • DOI full text
    • PubMed
  • Numamoto M, et al. (2015) The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae. J Biochem 157(1):53-64 PMID:25313402
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2015) Stabilization of mini-chromosome segregation during mitotic growth by overexpression of YCR041W and its application to chromosome engineering in Saccharomyces cerevisiae. J Biosci Bioeng 119(5):526-31 PMID:25454064
    • SGD Paper
    • DOI full text
    • PubMed
  • Sharmin D, et al. (2015) Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae. J Biosci Bioeng 119(4):392-8 PMID:25449759
    • SGD Paper
    • DOI full text
    • PubMed
  • Kaboli S, et al. (2014) Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network. Nucleic Acids Res 42(15):9838-53 PMID:25104020
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Nasuno R, et al. (2014) Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1. PLoS One 9(11):e113788 PMID:25423296
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sharmin D, et al. (2014) Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae. Yeast 31(10):393-409 PMID:25088474
    • SGD Paper
    • DOI full text
    • PubMed
  • Khatun F, et al. (2013) Increase in rRNA content in a Saccharomyces cerevisiae suppressor strain from rrn10 disruptant by rDNA cluster duplication. Appl Microbiol Biotechnol 97(20):9011-9 PMID:23872957
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2013) Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast. Int J Food Microbiol 165(3):241-5 PMID:23800735
    • SGD Paper
    • DOI full text
    • PubMed
  • Hoa BT, et al. (2012) Production of N-acetyl cis-4-hydroxy-L-proline by the yeast N-acetyltransferase Mpr1. J Biosci Bioeng 114(2):160-5 PMID:22578594
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2012) Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microb Cell Fact 11:40 PMID:22462683
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Sasano Y, et al. (2012) Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough. Biosci Biotechnol Biochem 76(3):624-7 PMID:22451415
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2012) Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. J Biosci Bioeng 113(5):592-5 PMID:22280966
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2012) Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng 113(4):451-5 PMID:22178024
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2012) Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol 152(1-2):40-3 PMID:22041027
    • SGD Paper
    • DOI full text
    • PubMed
  • Nishimura A, et al. (2010) An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 10(6):687-98 PMID:20550582
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2010) Trm2p-dependent derepression is essential for methanol-specific gene activation in the methylotrophic yeast Candida boidinii. FEMS Yeast Res 10(5):535-44 PMID:20491943
    • SGD Paper
    • DOI full text
    • PubMed
  • Sasano Y, et al. (2010) Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Int J Food Microbiol 138(1-2):181-5 PMID:20096471
    • SGD Paper
    • DOI full text
    • PubMed
  • Iinoya K, et al. (2009) Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnol Bioeng 103(2):341-52 PMID:19170243
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top