Easmin F, et al. (2020) CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae. J Biosci Bioeng 129(2):129-139 PMID:31585858
Hassan N, et al. (2020) CRISPR-PCDup: a novel approach for simultaneous segmental chromosomal duplication in Saccharomyces cerevisiae. AMB Express 10(1):27 PMID:32016717
Hassan N, et al. (2020) Systematic approach for assessing whether undeletable chromosomal regions in Saccharomyces cerevisiae are required for cell viability. AMB Express 10(1):73 PMID:32296956
Sasano Y, et al. (2018) Genetic analysis of suppressor mutants of a pho84 disruptant in the search for genes involved in intracellular inorganic phosphate sensing in Saccharomyces cerevisiae. Genes Genet Syst 93(5):199-207 PMID:30449767
Sasano Y and Harashima S (2017) CRISPR-PCS Protocol for Chromosome Splitting and Splitting Event Detection in Saccharomyces cerevisiae. Bio Protoc 7(10):e2306 PMID:34541068
Sasano Y, et al. (2017) Molecular breeding of Saccharomyces cerevisiae with high RNA content by harnessing essential ribosomal RNA transcription regulator. AMB Express 7(1):32 PMID:28155199
Kaboli S, et al. (2016) Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae. J Biosci Bioeng 121(6):638-644 PMID:26690924
Sasano Y, et al. (2016) CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae. Sci Rep 6:30278 PMID:27530680
Natesuntorn W, et al. (2015) Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae. Sci Rep 5:12510 PMID:26224198
Numamoto M, et al. (2015) Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae. J Biosci Bioeng 120(2):121-7 PMID:25641578
Numamoto M, et al. (2015) The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae. J Biochem 157(1):53-64 PMID:25313402
Sasano Y, et al. (2015) Stabilization of mini-chromosome segregation during mitotic growth by overexpression of YCR041W and its application to chromosome engineering in Saccharomyces cerevisiae. J Biosci Bioeng 119(5):526-31 PMID:25454064
Sharmin D, et al. (2015) Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae. J Biosci Bioeng 119(4):392-8 PMID:25449759
Kaboli S, et al. (2014) Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network. Nucleic Acids Res 42(15):9838-53 PMID:25104020
Nasuno R, et al. (2014) Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1. PLoS One 9(11):e113788 PMID:25423296
Sharmin D, et al. (2014) Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae. Yeast 31(10):393-409 PMID:25088474
Khatun F, et al. (2013) Increase in rRNA content in a Saccharomyces cerevisiae suppressor strain from rrn10 disruptant by rDNA cluster duplication. Appl Microbiol Biotechnol 97(20):9011-9 PMID:23872957
Sasano Y, et al. (2013) Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast. Int J Food Microbiol 165(3):241-5 PMID:23800735
Sasano Y, et al. (2012) Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microb Cell Fact 11:40 PMID:22462683
Sasano Y, et al. (2012) Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough. Biosci Biotechnol Biochem 76(3):624-7 PMID:22451415
Sasano Y, et al. (2012) Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. J Biosci Bioeng 113(5):592-5 PMID:22280966
Sasano Y, et al. (2012) Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng 113(4):451-5 PMID:22178024
Sasano Y, et al. (2012) Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol 152(1-2):40-3 PMID:22041027
Nishimura A, et al. (2010) An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 10(6):687-98 PMID:20550582
Sasano Y, et al. (2010) Trm2p-dependent derepression is essential for methanol-specific gene activation in the methylotrophic yeast Candida boidinii. FEMS Yeast Res 10(5):535-44 PMID:20491943
Sasano Y, et al. (2010) Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Int J Food Microbiol 138(1-2):181-5 PMID:20096471
Iinoya K, et al. (2009) Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnol Bioeng 103(2):341-52 PMID:19170243