AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Salinas F
  • References

Author: Salinas F


References 33 references


No citations for this author.

Download References (.nbib)

  • Figueroa D, et al. (2025) Optogenetic control of horizontally acquired genes prevent stuck fermentations in yeast. Microbiol Spectr 13(2):e0179424 PMID:39772912
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gómez M, et al. (2025) High-Throughput Indirect Monitoring of TORC1 Activation Using the pTOMAN-G Plasmid in Yeast. Bio Protoc 15(12):e5356 PMID:40620813
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ruiz D, et al. (2025) Optogenetic Modification of Glycerol Production in Wine Yeast. ACS Synth Biol 14(3):719-728 PMID:39951366
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Rocha G, et al. (2024) Phenotyping of a new yeast mapping population reveals differences in the activation of the TORC1 signalling pathway between wild and domesticated yeast strains. Biol Res 57(1):82 PMID:39511644
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kessi-Pérez EI, et al. (2023) Single nucleotide polymorphisms associated with wine fermentation and adaptation to nitrogen limitation in wild and domesticated yeast strains. Biol Res 56(1):43 PMID:37507753
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Figueroa D, et al. (2022) Expanding the molecular versatility of an optogenetic switch in yeast. Front Bioeng Biotechnol 10:1029217 PMID:36457859
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Molinet J, et al. (2022) A Saccharomyces eubayanus haploid resource for research studies. Sci Rep 12(1):5976 PMID:35396494
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Figueroa D, et al. (2021) The rise and shine of yeast optogenetics. Yeast 38(2):131-146 PMID:33119964
    • SGD Paper
    • DOI full text
    • PubMed
  • Devia J, et al. (2020) Transcriptional Activity and Protein Levels of Horizontally Acquired Genes in Yeast Reveal Hallmarks of Adaptation to Fermentative Environments. Front Genet 11:293 PMID:32425968
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kessi-Pérez EI, et al. (2020) Differential Gene Expression and Allele Frequency Changes Favour Adaptation of a Heterogeneous Yeast Population to Nitrogen-Limited Fermentations. Front Microbiol 11:1204 PMID:32612585
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Molinet J, et al. (2020) GTR1 Affects Nitrogen Consumption and TORC1 Activity in Saccharomyces cerevisiae Under Fermentation Conditions. Front Genet 11:519 PMID:32523604
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kessi-Pérez EI, et al. (2019) Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast 36(1):65-74 PMID:30094872
    • SGD Paper
    • DOI full text
    • PubMed
  • Kessi-Pérez EI, et al. (2019) KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Front Microbiol 10:1686 PMID:31417508
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Molinet J, et al. (2019) Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS One 14(7):e0220515 PMID:31348805
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Villalobos-Cid M, et al. (2019) Comparison of Phylogenetic Tree Topologies for Nitrogen Associated Genes Partially Reconstruct the Evolutionary History of Saccharomyces cerevisiae. Microorganisms 8(1) PMID:31877949
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Salinas F, et al. (2018) Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast. mBio 9(4) PMID:30065085
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Tapia SM, et al. (2018) GPD1 and ADH3 Natural Variants Underlie Glycerol Yield Differences in Wine Fermentation. Front Microbiol 9:1460 PMID:30018610
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Salinas F, et al. (2017) Optogenetic switches for light-controlled gene expression in yeast. Appl Microbiol Biotechnol 101(7):2629-2640 PMID:28210796
    • SGD Paper
    • DOI full text
    • PubMed
  • Vázquez-García I, et al. (2017) Clonal Heterogeneity Influences the Fate of New Adaptive Mutations. Cell Rep 21(3):732-744 PMID:29045840
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Hallin J, et al. (2016) Powerful decomposition of complex traits in a diploid model. Nat Commun 7:13311 PMID:27804950
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Kessi-Pérez EI, et al. (2016) RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Res 16(3) PMID:26945894
    • SGD Paper
    • DOI full text
    • PubMed
  • Laureau R, et al. (2016) Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion. PLoS Genet 12(2):e1005781 PMID:26828862
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Salinas F, et al. (2016) Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Sci Rep 6:21849 PMID:26898953
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ibstedt S, et al. (2015) Concerted evolution of life stage performances signals recent selection on yeast nitrogen use. Mol Biol Evol 32(1):153-61 PMID:25349282
    • SGD Paper
    • DOI full text
    • PubMed
  • López-Martínez G, et al. (2015) ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae. PLoS One 10(3):e0119606 PMID:25803831
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Bergström A, et al. (2014) A high-definition view of functional genetic variation from natural yeast genomes. Mol Biol Evol 31(4):872-88 PMID:24425782
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Jara M, et al. (2014) Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts. PLoS One 9(1):e86533 PMID:24466135
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cubillos FA, et al. (2013) High-resolution mapping of complex traits with a four-parent advanced intercross yeast population. Genetics 195(3):1141-55 PMID:24037264
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Contreras A, et al. (2012) Identification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae. World J Microbiol Biotechnol 28(3):1107-13 PMID:22805832
    • SGD Paper
    • DOI full text
    • PubMed
  • Salinas F, et al. (2012) The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae. PLoS One 7(11):e49640 PMID:23185390
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Parts L, et al. (2011) Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res 21(7):1131-8 PMID:21422276
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Salinas F, et al. (2010) Genomic and phenotypic comparison between similar wine yeast strains of Saccharomyces cerevisiae from different geographic origins. J Appl Microbiol 108(5):1850-8 PMID:20163487
    • SGD Paper
    • DOI full text
    • PubMed
  • Salinas F, et al. (2009) Taqman real-time PCR for the detection and enumeration of Saccharomyces cerevisiae in wine. Food Microbiol 26(3):328-32 PMID:19269577
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top