AboutBlogDownloadExploreHelpGet Data
Email Us Mastodon BlueSky Facebook LinkedIn YouTube
Saccharomyces Genome Database
  • Saccharomyces Genome Database
    Saccharomyces Genome Database
  • Menu
  • Analyze
    • Gene Lists
    • BLAST
    • Fungal BLAST
    • GO Term Finder
    • GO Slim Mapper
    • Pattern Matching
    • Design Primers
    • Restriction Site Mapper
  • Sequence
    • Download
    • Genome Browser
    • BLAST
    • Fungal BLAST
    • Gene/Sequence Resources
    • Reference Genome
      • Download Genome
      • Genome Snapshot
      • Chromosome History
      • Systematic Sequencing Table
      • Original Sequence Papers
    • Strains and Species
      • Variant Viewer
      • Align Strain Sequences
    • Resources
      • UniProtKB
      • InterPro (EBI)
      • HomoloGene (NCBI)
      • YGOB (Trinity College)
      • AlphaFold
  • Function
    • Gene Ontology
      • GO Term Finder
      • GO Slim Mapper
      • GO Slim Mapping File
    • Expression
    • Biochemical Pathways
    • Phenotypes
      • Browse All Phenotypes
    • Interactions
    • YeastGFP
    • Resources
      • GO Consortium
      • BioGRID (U. Toronto)
  • Literature
    • Full-text Search
    • New Yeast Papers
    • YeastBook
    • Resources
      • PubMed (NCBI)
      • PubMed Central (NCBI)
      • Google Scholar
  • Community
    • Community Forum
    • Colleague Information
      • Find a Colleague
      • Add or Update Info
      • Find a Yeast Lab
    • Education
    • Meetings
    • Nomenclature
      • Submit a Gene Registration
      • Gene Registry
      • Nomenclature Conventions
    • Methods and Reagents
      • Strains
    • Historical Data
      • Physical & Genetic Maps
      • Genetic Maps
      • Genetic Loci
      • ORFMap Chromosomes
      • Sequence
    • Submit Data
    • API
  • Info & Downloads
    • About
    • Blog
    • Downloads
    • Site Map
    • Help
  • Author: Ross ED
  • References

Author: Ross ED


References 31 references


No citations for this author.

Download References (.nbib)

  • Cascarina SM, et al. (2021) Generalizable Compositional Features Influencing the Proteostatic Fates of Polar Low-Complexity Domains. Int J Mol Sci 22(16) PMID:34445649
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Fomicheva A and Ross ED (2021) From Prions to Stress Granules: Defining the Compositional Features of Prion-Like Domains That Promote Different Types of Assemblies. Int J Mol Sci 22(3) PMID:33513942
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Boncella AE, et al. (2020) Composition-based prediction and rational manipulation of prion-like domain recruitment to stress granules. Proc Natl Acad Sci U S A 117(11):5826-5835 PMID:32127480
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shattuck JE, et al. (2020) Sky1: at the intersection of prion-like proteins and stress granule regulation. Curr Genet 66(3):463-468 PMID:31745569
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cascarina SM and Ross ED (2019) Aggregation and degradation scales for prion-like domains: sequence features and context weigh in. Curr Genet 65(2):387-392 PMID:30310993
    • SGD Paper
    • DOI full text
    • PubMed
  • Shattuck JE, et al. (2019) The prion-like protein kinase Sky1 is required for efficient stress granule disassembly. Nat Commun 10(1):3614 PMID:31399582
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cascarina SM, et al. (2018) Sequence features governing aggregation or degradation of prion-like proteins. PLoS Genet 14(7):e1007517 PMID:30005071
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shattuck JE, et al. (2017) The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains. Prion 11(4):249-264 PMID:28665753
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • MacLea KS, et al. (2015) Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast. Mol Cell Biol 35(5):899-911 PMID:25547291
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Paul KR and Ross ED (2015) Controlling the prion propensity of glutamine/asparagine-rich proteins. Prion 9(5):347-54 PMID:26555096
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Paul KR, et al. (2015) Generating new prions by targeted mutation or segment duplication. Proc Natl Acad Sci U S A 112(28):8584-9 PMID:26100899
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Cascarina SM and Ross ED (2014) Yeast prions and human prion-like proteins: sequence features and prediction methods. Cell Mol Life Sci 71(11):2047-63 PMID:24390581
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Gonzalez Nelson AC, et al. (2014) Increasing prion propensity by hydrophobic insertion. PLoS One 9(2):e89286 PMID:24586661
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ross ED, et al. (2013) A bioinformatics method for identifying Q/N-rich prion-like domains in proteins. Methods Mol Biol 1017:219-28 PMID:23719919
    • SGD Paper
    • DOI full text
    • PubMed
  • Gonzalez Nelson AC and Ross ED (2011) Interactions between non-identical prion proteins. Semin Cell Dev Biol 22(5):437-43 PMID:21354317
    • SGD Paper
    • DOI full text
    • PubMed
  • MacLea KS and Ross ED (2011) Strategies for identifying new prions in yeast. Prion 5(4):263-8 PMID:22052351
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Toombs JA, et al. (2011) [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. PLoS One 6(7):e21953 PMID:21760933
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ross ED and Toombs JA (2010) The effects of amino acid composition on yeast prion formation and prion domain interactions. Prion 4(2):60-5 PMID:20495349
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Toombs JA, et al. (2010) Compositional determinants of prion formation in yeast. Mol Cell Biol 30(1):319-32 PMID:19884345
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ross CD, et al. (2009) A promiscuous prion: efficient induction of [URE3] prion formation by heterologous prion domains. Genetics 183(3):929-40 PMID:19752212
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Shewmaker F, et al. (2008) Amyloids of shuffled prion domains that form prions have a parallel in-register beta-sheet structure. Biochemistry 47(13):4000-7 PMID:18324784
    • SGD Paper
    • DOI full text
    • PubMed
  • Watzky MA, et al. (2008) Fitting yeast and mammalian prion aggregation kinetic data with the Finke-Watzky two-step model of nucleation and autocatalytic growth. Biochemistry 47(40):10790-800 PMID:18785757
    • SGD Paper
    • DOI full text
    • PubMed
  • Brachmann A, et al. (2006) Reporter assay systems for [URE3] detection and analysis. Methods 39(1):35-42 PMID:16762564
    • SGD Paper
    • DOI full text
    • PubMed
  • Ross ED, et al. (2005) Prion domains: sequences, structures and interactions. Nat Cell Biol 7(11):1039-44 PMID:16385730
    • SGD Paper
    • DOI full text
    • PubMed
  • Ross ED, et al. (2005) Primary sequence independence for prion formation. Proc Natl Acad Sci U S A 102(36):12825-30 PMID:16123127
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Ross ED and Wickner RB (2004) Prions of yeast fail to elicit a transcriptional response. Yeast 21(11):963-72 PMID:15334559
    • SGD Paper
    • DOI full text
    • PubMed
  • Ross ED, et al. (2004) Scrambled prion domains form prions and amyloid. Mol Cell Biol 24(16):7206-13 PMID:15282319
    • SGD Paper
    • DOI full text
    • PMC full text
    • PubMed
  • Wickner RB, et al. (2004) Prion genetics: new rules for a new kind of gene. Annu Rev Genet 38:681-707 PMID:15355224
    • SGD Paper
    • DOI full text
    • PubMed
  • Wickner RB, et al. (2004) Prions: proteins as genes and infectious entities. Genes Dev 18(5):470-85 PMID:15037545
    • SGD Paper
    • DOI full text
    • PubMed
  • Wickner RB, et al. (2004) Prions of yeast are genes made of protein: amyloids and enzymes. Cold Spring Harb Symp Quant Biol 69:489-96 PMID:16117685
    • SGD Paper
    • DOI full text
    • PubMed
  • Johnson BD, et al. (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273(6):3679-86 PMID:9452498
    • SGD Paper
    • DOI full text
    • PubMed
  • SGD
  • About
  • Blog
  • Help
  • Privacy Policy
  • Creative Commons License
© Stanford University, Stanford, CA 94305.
Back to Top